128 research outputs found

    MAPPING FOREST STRUCTURE AND HABITAT CHARACTERISTICS USING LIDAR AND MULTI-SENSOR FUSION

    Get PDF
    This dissertation explored the combined use of lidar and other remote sensing data for improved forest structure and habitat mapping. The objectives were to quantify aboveground biomass and canopy dynamics and map habitat characteristics with lidar and /or fusion approaches. Structural metrics from lidar and spectral characteristics from hyperspectral data were combined for improving biomass estimates in the Sierra Nevada, California. Addition of hyperspectral metrics only marginally improved biomass estimates from lidar, however, predictions from lidar after species stratification of field data improved by 12%. Spatial predictions from lidar after species stratification of hyperspectral data also had lower errors suggesting this could be viable method for mapping biomass at landscape level. A combined analysis of the two datasets further showed that fusion could have considerably more value in understanding ecosystem and habitat characteristics. The second objective was to quantify canopy height and biomass changes in in the Sierra Nevada using lidar data acquired in 1999 and 2008. Direct change detection showed overall statistically significant positive height change at footprint level (ΔRH100 = 0.69 m, +/- 7.94 m). Across the landscape, ~20 % of height and biomass changes were significant with more than 60% being positive, suggesting regeneration from past disturbances and a small net carbon sink. This study added further evidence to the capabilities of waveform lidar in mapping canopy dynamics while highlighting the need for error analysis and rigorous field validation Lastly, fusion applications for habitat mapping were tested with radar, lidar and multispectral data in the Hubbard Brook Experimental Forest, New Hampshire. A suite of metrics from each dataset was used to predict multi-year presence for eight migratory songbirds with data mining methods. Results showed that fusion improved predictions for all datasets, with more than 25% improvement from radar alone. Spatial predictions from fusion were also consistent with known habitat preferences for the birds demonstrating the potential of multi- sensor fusion in mapping habitat characteristics. The main contribution of this research was an improved understanding of lidar and multi-sensor fusion approaches for applications in carbon science and habitat studies

    Advances in Waveform and Photon Counting Lidar Processing for Forest Vegetation Applications

    Get PDF
    Full waveform (FW) and photon counting LiDAR (PCL) data have garnered greater attention due to increasing data availability, a wealth of information they contain and promising prospects for large scale vegetation mapping. However, many factors such as complex processing steps and scarce non-proprietary tools preclude extensive and practical uses of these data for vegetation characterization. Therefore, the overall goal of this study is to develop algorithms to process FW and PCL data and to explore their potential in real-world applications. Study I explored classical waveform decomposition methods such as the Gaussian decomposition, Richardson–Lucy (RL) deconvolution and a newly introduced optimized Gold deconvolution to process FW LiDAR data. Results demonstrated the advantages of the deconvolution and decomposition method, and the three approaches generated satisfactory results, while the best performances varied when different criteria were used. Built upon Study I, Study II applied the Bayesian non-linear modeling concepts for waveform decomposition and quantified the propagation of error and uncertainty along the processing steps. The performance evaluation and uncertainty analysis at the parameter, derived point cloud and surface model levels showed that the Bayesian decomposition could enhance the credibility of decomposition results in a probabilistic sense to capture the true error of estimates and trace the uncertainty propagation along the processing steps. In study III, we exploited FW LiDAR data to classify tree species through integrating machine learning methods (the Random forests (RF) and Conditional inference forests (CF)) and Bayesian inference method. Results of classification accuracy highlighted that the Bayesian method was a superior alternative to machine learning methods, and rendered users with more confidence for interpreting and applying classification results to real-world tasks such as forest inventory. Study IV focused on developing a framework to derive terrain elevation and vegetation canopy height from test-bed sensor data and to pre-validate the capacity of the upcoming Ice, Cloud and Land Elevation Satellite-2 (ICESat-2) mission. The methodology developed in this study illustrates plausible ways of processing the data that are structurally similar to expected ICESat-2 data and holds the potential to be a benchmark for further method adjustment once genuine ICESat-2 are available

    Mapping plant diversity and composition across North Carolina Piedmont forest landscapes using LiDAR-hyperspectral remote sensing

    Get PDF
    Forest modification, from local stress to global change, has given rise to efforts to model, map, and monitor critical properties of forest communities like structure, composition, and diversity. Predictive models based on data from spatially-nested field plots and LiDAR-hyperspectral remote sensing systems are one particularly effective means towards the otherwise prohibitively resource-intensive task of consistently characterizing forest community dynamics at landscape scales. However, to date, most predictive models fail to account for actual (rather than idealized) species and community distributions, are unsuccessful in predicting understory components in structurally and taxonomically heterogeneous forests, and may suffer from diminished predictive accuracy due to incongruity in scale and precision between field plot samples, remotely-sensed data, and target biota of varying size and density. This three-part study addresses these and other concerns in the modeling and mapping of emergent properties of forest communities by shifting the scope of prediction from the individual or taxon to the whole stand or community. It is, after all, at the stand scale where emergent properties like functional processes, biodiversity, and habitat aggregate and manifest. In the first study, I explore the relationship between forest structure (a proxy for successional demographics and resource competition) and tree species diversity in the North Carolina Piedmont, highlighting the empirical basis and potential for utilizing forest structure from LiDAR in predictive models of tree species diversity. I then extend these conclusions to map landscape pattern in multi-scale vascular plant diversity as well as turnover in community-continua at varying compositional resolutions in a North Carolina Piedmont landscape using remotely-sensed LiDAR-hyperspectral estimates of topography, canopy structure, and foliar biochemistry. Recognizing that the distinction between correlation and causation mirrors that between knowledge and understanding, all three studies distinguish between prediction of pattern and inference of process. Thus, in addition to advancing mapping methodologies relevant to a range of forest ecosystem management and monitoring applications, all three studies are noteworthy for assessing the ecological relationship between environmental predictors and emergent landscape patterns in plant composition and diversity in North Carolina Piedmont forests.Doctor of Philosoph

    Multiscale forest health mapping: the potential of air- and space-borne remote sensing sensors

    Full text link
    Forest health decline triggered by extensive periods of drought and high temperatures is increasingly common across Australia. In this respect remote sensing technology may help with understanding and managing forest health decline by providing information on a scale that field-based studies cannot match. In this thesis I explore the potential of air- and space-borne remote sensing in characterizing and monitoring forest health expressed in terms of tree dieback at multiple scales. I conducted my experiments in the largest river red gum forest in the world, located in the south-east of Australia that has experienced episodes of severe dieback over the past six decades. First, I propose a new algorithm that utilizes high point density airborne laser scans (ALS) for delineating individual trees with complex shapes, such as eucalypts, in Chapter 2. My algorithm was able to accurately delineate up to 68% of trees depending on forest and ALS point density. Second, I investigate the utility of ALS and imaging spectroscopy in classifying forest health at the individual tree level and diagnosing potential causes of forest health decline, in Chapter 3. According to my results the health of individual trees can be classified with an overall accuracy of 81% and a kappa score of 0.66, while infrequently flooded areas were most susceptible to tree health decline. Finally, I assess how low point density ALS, Synthetic Aperture Radar and multispectral satellite imagery can estimate forest health at the plot level, in Chapter 4. My findings demonstrate that individual tree health could be scaled up to the plot level with substantial level of accuracy (R2 of up to 0.64). Overall, my results provide a robust and peer-reviewed methodology that utilizes air- and space-borne remote sensing to accurately classify forest health at multiple scales. Moreover, the forest health map produced as a result of my research will potentially enable forest managers to perform demographic reporting on forest dynamics, diagnose ecological processes linked to forest health, and prioritize areas for forest health promotion and conservation of biodiversity

    Forestry and Arboriculture Applications Using High-Resolution Imagery from Unmanned Aerial Vehicles (UAV)

    Get PDF
    Forests cover over one-third of the planet and provide unmeasurable benefits to the ecosystem. Forest managers have collected and processed countless amounts of data for use in studying, planning, and management of these forests. Data collection has evolved from completely manual operations to the incorporation of technology that has increased the efficiency of data collection and decreased overall costs. Many technological advances have been made that can be incorporated into natural resources disciplines. Laser measuring devices, handheld data collectors and more recently, unmanned aerial vehicles, are just a few items that are playing a major role in the way data is managed and collected. Field hardware has also been aided with new and improved mobile and computer software. Over the course of this study, field technology along with computer advancements have been utilized to aid in forestry and arboricultural applications. Three-dimensional point cloud data that represent tree shape and height were extracted and examined for accuracy. Traditional fieldwork collection (tree height, tree diameter and canopy metrics) was derived from remotely sensed data by using new modeling techniques which will result in time and cost savings. Using high resolution aerial photography, individual tree species are classified to support tree inventory development. Point clouds were used to create digital elevation models (DEM) which can further be used in hydrology analysis, slope, aspect, and hillshades. Digital terrain models (DTM) are in geographic information system (GIS), and along with DEMs, used to create canopy height models (CHM). The results of this study can enhance how the data are utilized and prompt further research and new initiatives that will improve and garner new insight for the use of remotely sensed data in forest management

    Assessing biodiversity using forest structure indicators based on airborne laser scanning data

    Get PDF
    The role of forests in biodiversity assessment and planning is substantial as these ecosystems support approximately 80% of the world’s terrestrial biodiversity. Forests provide food, shelter, and nesting environments for numerous species, and deliver multiple ecosystem services. It has been widely recognised that forest vegetation structure and its complexity influence local variations in biodiversity. As forests are facing threats globally caused by human activities, there is a need to map the biodiversity of these ecosystems. The main objective of this review was to summarise the use of airborne laser scanning (ALS) data in biodiversity-related assessment of forests. We draw attention to topics related to animal ecology, structural diversity, dead wood, fragmentation and forest habitat classification. After conducting a thorough literature search, we categorised scientific articles based on their topics, which served as the basis for the section division in this paper. The majority of the research was found to be conducted in Europe and North America, only a small fraction of the study areas was located elsewhere. Topics that have received the most attention were related to animal ecology (namely richness and diversity of forest fauna), assessment of dead trees and tree species diversity measures. Not all studies used ALS data only, as it were often fused with other remote sensing data – especially with aerial or satellite images. The fusion of spectral information from optical images and the structural information provided by ALS was highly advantageous in studies where tree species were considered. Relevant ALS variables were found to be case-specific, so variables varied widely between forest biodiversity studies. We found that there was a lack of research in geographical areas and forest types other than temperate and boreal forests. Also, topics that considered functional diversity, community composition and the effect of spatial resolution at which ALS data and field information are linked, were covered to much lesser extent

    Evaluation of the spatial linear model, random forest and gradient nearest-neighbour methods for imputing potential productivity and biomass of the Pacific Northwest forests

    Get PDF
    Increasingly, forest management and conservation plans require spatially explicit information within a management or conservation unit. Forest biomass and potential productivity are critical variables for forest planning and assessment in the Pacific Northwest. Their values are often estimated from ground-measured sample data. For unsampled locations, forest analysts and planners lack forest productivity and biomass values, so values must be predicted. Using simulated data and forest inventory and analysis data collected in Oregon and Washington, we examined the performance of the spatial linear model (SLM), random forest (RF) and gradient nearest neighbour (GNN) for mapping and estimating biomass and potential productivity of Pacific Northwest forests. Simulations of artificial populations and subsamplings of forest biomass and productivity data showed that the SLM had smaller empirical root-mean-squared prediction errors (RMSPE) for a wide variety of data types, with generally less bias and better interval coverage than RFand GNN. These patterns held for both point predictions and for population averages, with the SLM reducing RMSPE by 30.0 and 52.6 per cent over two GNN methods in predicting point estimates for forest biomass and potential productivity

    Advances in Waveform and Photon Counting Lidar Processing for Forest Vegetation Applications

    Get PDF
    Full waveform (FW) and photon counting LiDAR (PCL) data have garnered greater attention due to increasing data availability, a wealth of information they contain and promising prospects for large scale vegetation mapping. However, many factors such as complex processing steps and scarce non-proprietary tools preclude extensive and practical uses of these data for vegetation characterization. Therefore, the overall goal of this study is to develop algorithms to process FW and PCL data and to explore their potential in real-world applications. Study I explored classical waveform decomposition methods such as the Gaussian decomposition, Richardson–Lucy (RL) deconvolution and a newly introduced optimized Gold deconvolution to process FW LiDAR data. Results demonstrated the advantages of the deconvolution and decomposition method, and the three approaches generated satisfactory results, while the best performances varied when different criteria were used. Built upon Study I, Study II applied the Bayesian non-linear modeling concepts for waveform decomposition and quantified the propagation of error and uncertainty along the processing steps. The performance evaluation and uncertainty analysis at the parameter, derived point cloud and surface model levels showed that the Bayesian decomposition could enhance the credibility of decomposition results in a probabilistic sense to capture the true error of estimates and trace the uncertainty propagation along the processing steps. In study III, we exploited FW LiDAR data to classify tree species through integrating machine learning methods (the Random forests (RF) and Conditional inference forests (CF)) and Bayesian inference method. Results of classification accuracy highlighted that the Bayesian method was a superior alternative to machine learning methods, and rendered users with more confidence for interpreting and applying classification results to real-world tasks such as forest inventory. Study IV focused on developing a framework to derive terrain elevation and vegetation canopy height from test-bed sensor data and to pre-validate the capacity of the upcoming Ice, Cloud and Land Elevation Satellite-2 (ICESat-2) mission. The methodology developed in this study illustrates plausible ways of processing the data that are structurally similar to expected ICESat-2 data and holds the potential to be a benchmark for further method adjustment once genuine ICESat-2 are available
    • …
    corecore