31,370 research outputs found

    Personalizing gesture recognition using hierarchical bayesian neural networks

    Full text link
    Building robust classifiers trained on data susceptible to group or subject-specific variations is a challenging pattern recognition problem. We develop hierarchical Bayesian neural networks to capture subject-specific variations and share statistical strength across subjects. Leveraging recent work on learning Bayesian neural networks, we build fast, scalable algorithms for inferring the posterior distribution over all network weights in the hierarchy. We also develop methods for adapting our model to new subjects when a small number of subject-specific personalization data is available. Finally, we investigate active learning algorithms for interactively labeling personalization data in resource-constrained scenarios. Focusing on the problem of gesture recognition where inter-subject variations are commonplace, we demonstrate the effectiveness of our proposed techniques. We test our framework on three widely used gesture recognition datasets, achieving personalization performance competitive with the state-of-the-art.http://openaccess.thecvf.com/content_cvpr_2017/html/Joshi_Personalizing_Gesture_Recognition_CVPR_2017_paper.htmlhttp://openaccess.thecvf.com/content_cvpr_2017/html/Joshi_Personalizing_Gesture_Recognition_CVPR_2017_paper.htmlhttp://openaccess.thecvf.com/content_cvpr_2017/html/Joshi_Personalizing_Gesture_Recognition_CVPR_2017_paper.htmlPublished versio

    Mind the Gap: Subspace based Hierarchical Domain Adaptation

    Full text link
    Domain adaptation techniques aim at adapting a classifier learnt on a source domain to work on the target domain. Exploiting the subspaces spanned by features of the source and target domains respectively is one approach that has been investigated towards solving this problem. These techniques normally assume the existence of a single subspace for the entire source / target domain. In this work, we consider the hierarchical organization of the data and consider multiple subspaces for the source and target domain based on the hierarchy. We evaluate different subspace based domain adaptation techniques under this setting and observe that using different subspaces based on the hierarchy yields consistent improvement over a non-hierarchical baselineComment: 4 pages in Second Workshop on Transfer and Multi-Task Learning: Theory meets Practice in NIPS 201

    Modeling Topic and Role Information in Meetings using the Hierarchical Dirichlet Process

    Get PDF
    Abstract. In this paper, we address the modeling of topic and role information in multiparty meetings, via a nonparametric Bayesian model called the hierarchical Dirichlet process. This model provides a powerful solution to topic modeling and a flexible framework for the incorporation of other cues such as speaker role information. We present our modeling framework for topic and role on the AMI Meeting Corpus, and illustrate the effectiveness of the approach in the context of adapting a baseline language model in a large-vocabulary automatic speech recognition system for multiparty meetings. The adapted LM produces significant improvements in terms of both perplexity and word error rate.

    Unsupervised adaptation of PLDA models for broadcast diarization

    Get PDF
    We present a novel model adaptation approach to deal with data variability for speaker diarization in a broadcast environment. Expensive human annotated data can be used to mitigate the domain mismatch by means of supervised model adaptation approaches. By contrast, we propose an unsupervised adaptation method which does not need for in-domain labeled data but only the recording that we are diarizing. We rely on an inner adaptation block which combines Agglomerative Hierarchical Clustering (AHC) and Mean-Shift (MS) clustering techniques with a Fully Bayesian Probabilistic Linear Discriminant Analysis (PLDA) to produce pseudo-speaker labels suitable for model adaptation. We propose multiple adaptation approaches based on this basic block, including unsupervised and semi-supervised. Our proposed solutions, analyzed with the Multi-Genre Broadcast 2015 (MGB) dataset, reported significant improvements (16% relative improvement) with respect to the baseline, also outperforming a supervised adaptation proposal with low resources (9% relative improvement). Furthermore, our proposed unsupervised adaptation is totally compatible with a supervised one. The joint use of both adaptation techniques (supervised and unsupervised) shows a 13% relative improvement with respect to only considering the supervised adaptation

    Robustness issues in a data-driven spoken language understanding system

    Get PDF
    Robustness is a key requirement in spoken language understanding (SLU) systems. Human speech is often ungrammatical and ill-formed, and there will frequently be a mismatch between training and test data. This paper discusses robustness and adaptation issues in a statistically-based SLU system which is entirely data-driven. To test robustness, the system has been tested on data from the Air Travel Information Service (ATIS) domain which has been artificially corrupted with varying levels of additive noise. Although the speech recognition performance degraded steadily, the system did not fail catastrophically. Indeed, the rate at which the end-to-end performance of the complete system degraded was significantly slower than that of the actual recognition component. In a second set of experiments, the ability to rapidly adapt the core understanding component of the system to a different application within the same broad domain has been tested. Using only a small amount of training data, experiments have shown that a semantic parser based on the Hidden Vector State (HVS) model originally trained on the ATIS corpus can be straightforwardly adapted to the somewhat different DARPA Communicator task using standard adaptation algorithms. The paper concludes by suggesting that the results presented provide initial support to the claim that an SLU system which is statistically-based and trained entirely from data is intrinsically robust and can be readily adapted to new applications
    • ā€¦
    corecore