859 research outputs found

    Effects of Communication Protocol Stack Offload on Parallel Performance in Clusters

    Get PDF
    The primary research objective of this dissertation is to demonstrate that the effects of communication protocol stack offload (CPSO) on application execution time can be attributed to the following two complementary sources. First, the application-specific computation may be executed concurrently with the asynchronous communication performed by the communication protocol stack offload engine. Second, the protocol stack processing can be accelerated or decelerated by the offload engine. These two types of performance effects can be quantified with the use of the degree of overlapping Do and degree of acceleration Daccs. The composite communication speedup metrics S_comm(Do, Daccs) can be used in order to quantify the combined effects of the protocol stack offload. This dissertation thesis is validated empirically. The degree of overlapping Do, the degree of acceleration Daccs, and the communication speedup Scomm characteristic of the system configurations under test are derived in the course of experiments performed for the system configurations of interest. It is shown that the proposed metrics adequately describe the effects of the protocol stack offload on the application execution time. Additionally, a set of analytical models of the networking subsystem of a PC-based cluster node is developed. As a result of the modeling, the metrics Do, Daccs, and Scomm are obtained. The models are evaluated as to their complexity and precision by comparing the modeling results with the measured values of Do, Daccs, and Scomm. The primary contributions of this dissertation research are as follows. First, the metric Daccs and Scomm are introduced in order to complement the Do metric in its use for evaluation of the effects of optimizations in the networking subsystem on parallel performance in clusters. The metrics are shown to adequately describe CPSO performance effects. Second, a method for assessing performance effects of CPSO scenarios on application performance is developed and presented. Third, a set of analytical models of cluster node networking subsystems with CPSO capability is developed and characterised as to their complexity and precision of the prediction of the Do and Daccs metrics

    The "MIND" Scalable PIM Architecture

    Get PDF
    MIND (Memory, Intelligence, and Network Device) is an advanced parallel computer architecture for high performance computing and scalable embedded processing. It is a Processor-in-Memory (PIM) architecture integrating both DRAM bit cells and CMOS logic devices on the same silicon die. MIND is multicore with multiple memory/processor nodes on each chip and supports global shared memory across systems of MIND components. MIND is distinguished from other PIM architectures in that it incorporates mechanisms for efficient support of a global parallel execution model based on the semantics of message-driven multithreaded split-transaction processing. MIND is designed to operate either in conjunction with other conventional microprocessors or in standalone arrays of like devices. It also incorporates mechanisms for fault tolerance, real time execution, and active power management. This paper describes the major elements and operational methods of the MIND architecture

    Blindspot: Indistinguishable Anonymous Communications

    Get PDF
    Communication anonymity is a key requirement for individuals under targeted surveillance. Practical anonymous communications also require indistinguishability - an adversary should be unable to distinguish between anonymised and non-anonymised traffic for a given user. We propose Blindspot, a design for high-latency anonymous communications that offers indistinguishability and unobservability under a (qualified) global active adversary. Blindspot creates anonymous routes between sender-receiver pairs by subliminally encoding messages within the pre-existing communication behaviour of users within a social network. Specifically, the organic image sharing behaviour of users. Thus channel bandwidth depends on the intensity of image sharing behaviour of users along a route. A major challenge we successfully overcome is that routing must be accomplished in the face of significant restrictions - channel bandwidth is stochastic. We show that conventional social network routing strategies do not work. To solve this problem, we propose a novel routing algorithm. We evaluate Blindspot using a real-world dataset. We find that it delivers reasonable results for applications requiring low-volume unobservable communication.Comment: 13 Page

    Reducing Internet Latency : A Survey of Techniques and their Merit

    Get PDF
    Bob Briscoe, Anna Brunstrom, Andreas Petlund, David Hayes, David Ros, Ing-Jyh Tsang, Stein Gjessing, Gorry Fairhurst, Carsten Griwodz, Michael WelzlPeer reviewedPreprin

    Overlapping of Communication and Computation and Early Binding: Fundamental Mechanisms for Improving Parallel Performance on Clusters of Workstations

    Get PDF
    This study considers software techniques for improving performance on clusters of workstations and approaches for designing message-passing middleware that facilitate scalable, parallel processing. Early binding and overlapping of communication and computation are identified as fundamental approaches for improving parallel performance and scalability on clusters. Currently, cluster computers using the Message-Passing Interface for interprocess communication are the predominant choice for building high-performance computing facilities, which makes the findings of this work relevant to a wide audience from the areas of high-performance computing and parallel processing. The performance-enhancing techniques studied in this work are presently underutilized in practice because of the lack of adequate support by existing message-passing libraries and are also rarely considered by parallel algorithm designers. Furthermore, commonly accepted methods for performance analysis and evaluation of parallel systems omit these techniques and focus primarily on more obvious communication characteristics such as latency and bandwidth. This study provides a theoretical framework for describing early binding and overlapping of communication and computation in models for parallel programming. This framework defines four new performance metrics that facilitate new approaches for performance analysis of parallel systems and algorithms. This dissertation provides experimental data that validate the correctness and accuracy of the performance analysis based on the new framework. The theoretical results of this performance analysis can be used by designers of parallel system and application software for assessing the quality of their implementations and for predicting the effective performance benefits of early binding and overlapping. This work presents MPI/Pro, a new MPI implementation that is specifically optimized for clusters of workstations interconnected with high-speed networks. This MPI implementation emphasizes features such as persistent communication, asynchronous processing, low processor overhead, and independent message progress. These features are identified as critical for delivering maximum performance to applications. The experimental section of this dissertation demonstrates the capability of MPI/Pro to facilitate software techniques that result in significant application performance improvements. Specific demonstrations with Virtual Interface Architecture and TCP/IP over Ethernet are offered

    Characterizing Computation-Communication Overlap in Message-Passing Systems

    Full text link

    Routing brain traffic through the von Neumann bottleneck: Efficient cache usage in spiking neural network simulation code on general purpose computers

    Full text link
    Simulation is a third pillar next to experiment and theory in the study of complex dynamic systems such as biological neural networks. Contemporary brain-scale networks correspond to directed graphs of a few million nodes, each with an in-degree and out-degree of several thousands of edges, where nodes and edges correspond to the fundamental biological units, neurons and synapses, respectively. When considering a random graph, each node's edges are distributed across thousands of parallel processes. The activity in neuronal networks is also sparse. Each neuron occasionally transmits a brief signal, called spike, via its outgoing synapses to the corresponding target neurons. This spatial and temporal sparsity represents an inherent bottleneck for simulations on conventional computers: Fundamentally irregular memory-access patterns cause poor cache utilization. Using an established neuronal network simulation code as a reference implementation, we investigate how common techniques to recover cache performance such as software-induced prefetching and software pipelining can benefit a real-world application. The algorithmic changes reduce simulation time by up to 50%. The study exemplifies that many-core systems assigned with an intrinsically parallel computational problem can overcome the von Neumann bottleneck of conventional computer architectures
    • …
    corecore