94 research outputs found

    Impacts of frequent itemset hiding algorithms on privacy preserving data mining

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Computer Engineering, Izmir, 2010Includes bibliographical references (leaves: 54-58)Text in English; Abstract: Turkish and Englishx, 69 leavesThe invincible growing of computer capabilities and collection of large amounts of data in recent years, make data mining a popular analysis tool. Association rules (frequent itemsets), classification and clustering are main methods used in data mining research. The first part of this thesis is implementation and comparison of two frequent itemset mining algorithms that work without candidate itemset generation: Matrix Apriori and FP-Growth. Comparison of these algorithms revealed that Matrix Apriori has higher performance with its faster data structure. One of the great challenges of data mining is finding hidden patterns without violating data owners. privacy. Privacy preserving data mining came into prominence as a solution. In the second study of the thesis, Matrix Apriori algorithm is modified and a frequent itemset hiding framework is developed. Four frequent itemset hiding algorithms are proposed such that: i) all versions work without pre-mining so privacy breech caused by the knowledge obtained by finding frequent itemsets is prevented in advance, ii) efficiency is increased since no pre-mining is required, iii) supports are found during hiding process and at the end sanitized dataset and frequent itemsets of this dataset are given as outputs so no post-mining is required, iv) the heuristics use pattern lengths rather than transaction lengths eliminating the possibility of distorting more valuable data

    State of the Art in Privacy Preserving Data Mining

    Get PDF
    Privacy is one of the most important properties an information system must satisfy. A relatively new trend shows that classical access control techniques are not sufficient to guarantee privacy when Data Mining techniques are used. Such a trend, especially in the context of public databases, or in the context of sensible information related to critical infrastructures, represents, nowadays a not negligible thread. Privacy Preserving Data Mining (PPDM) algorithms have been recently introduced with the aim of modifying the database in such a way to prevent the discovery of sensible information. This is a very complex task and there exist in the scientific literature some different approaches to the problem. In this work we present a "Survey" of the current PPDM methodologies which seem promising for the future.JRC.G.6-Sensors, radar technologies and cybersecurit

    Protecting big data mining association rules using fuzzy system

    Get PDF
    Recently, big data is granted to be the solution to opening the subsequent large fluctuations of increase in fertility. Along with the growth, it is facing some of the challenges. One of the significant problems is data security. While people use data mining methods to identify valuable information following massive database, people further hold the necessary to maintain any knowledge so while not to be worked out, like delicate common itemsets, practices, taxonomy tree and the like Association rule mining can make a possible warning approaching the secrecy of information. So, association rule hiding methods are applied to evade the hazard of delicate information misuse. Various kinds of investigation already prepared on association rule protecting. However, maximum of them concentrate on introducing methods with a limited view outcome for inactive databases (with only existing information), while presently the researchers facing the problem with continuous information. Moreover, in the era of big data, this is essential to optimize current systems to be suited concerning the big data. This paper proposes the framework is achieving the data anonymization by using fuzzy logic by supporting big data mining. The fuzzy logic grouping the sensitivity of the association rules with a suitable association level. Moreover, parallelization methods which are inserted in the present framework will support fast data mining process

    JuxtaSet:visualization of time-varying patterns and missing data

    Get PDF

    Privacy by Design in Data Mining

    Get PDF
    Privacy is ever-growing concern in our society: the lack of reliable privacy safeguards in many current services and devices is the basis of a diffusion that is often more limited than expected. Moreover, people feel reluctant to provide true personal data, unless it is absolutely necessary. Thus, privacy is becoming a fundamental aspect to take into account when one wants to use, publish and analyze data involving sensitive information. Many recent research works have focused on the study of privacy protection: some of these studies aim at individual privacy, i.e., the protection of sensitive individual data, while others aim at corporate privacy, i.e., the protection of strategic information at organization level. Unfortunately, it is in- creasingly hard to transform the data in a way that it protects sensitive information: we live in the era of big data characterized by unprecedented opportunities to sense, store and analyze complex data which describes human activities in great detail and resolution. As a result anonymization simply cannot be accomplished by de-identification. In the last few years, several techniques for creating anonymous or obfuscated versions of data sets have been proposed, which essentially aim to find an acceptable trade-off between data privacy on the one hand and data utility on the other. So far, the common result obtained is that no general method exists which is capable of both dealing with “generic personal data” and preserving “generic analytical results”. In this thesis we propose the design of technological frameworks to counter the threats of undesirable, unlawful effects of privacy violation, without obstructing the knowledge discovery opportunities of data mining technologies. Our main idea is to inscribe privacy protection into the knowledge discovery technol- ogy by design, so that the analysis incorporates the relevant privacy requirements from the start. Therefore, we propose the privacy-by-design paradigm that sheds a new light on the study of privacy protection: once specific assumptions are made about the sensitive data and the target mining queries that are to be answered with the data, it is conceivable to design a framework to: a) transform the source data into an anonymous version with a quantifiable privacy guarantee, and b) guarantee that the target mining queries can be answered correctly using the transformed data instead of the original ones. This thesis investigates on two new research issues which arise in modern Data Mining and Data Privacy: individual privacy protection in data publishing while preserving specific data mining analysis, and corporate privacy protection in data mining outsourcing

    No Need to Know Physics: Resilience of Process-based Model-free Anomaly Detection for Industrial Control Systems

    Full text link
    In recent years, a number of process-based anomaly detection schemes for Industrial Control Systems were proposed. In this work, we provide the first systematic analysis of such schemes, and introduce a taxonomy of properties that are verified by those detection systems. We then present a novel general framework to generate adversarial spoofing signals that violate physical properties of the system, and use the framework to analyze four anomaly detectors published at top security conferences. We find that three of those detectors are susceptible to a number of adversarial manipulations (e.g., spoofing with precomputed patterns), which we call Synthetic Sensor Spoofing and one is resilient against our attacks. We investigate the root of its resilience and demonstrate that it comes from the properties that we introduced. Our attacks reduce the Recall (True Positive Rate) of the attacked schemes making them not able to correctly detect anomalies. Thus, the vulnerabilities we discovered in the anomaly detectors show that (despite an original good detection performance), those detectors are not able to reliably learn physical properties of the system. Even attacks that prior work was expected to be resilient against (based on verified properties) were found to be successful. We argue that our findings demonstrate the need for both more complete attacks in datasets, and more critical analysis of process-based anomaly detectors. We plan to release our implementation as open-source, together with an extension of two public datasets with a set of Synthetic Sensor Spoofing attacks as generated by our framework

    Knowledge Extraction in Video Through the Interaction Analysis of Activities

    Get PDF
    Video is a massive amount of data that contains complex interactions between moving objects. The extraction of knowledge from this type of information creates a demand for video analytics systems that uncover statistical relationships between activities and learn the correspondence between content and labels. However, those are open research problems that have high complexity when multiple actors simultaneously perform activities, videos contain noise, and streaming scenarios are considered. The techniques introduced in this dissertation provide a basis for analyzing video. The primary contributions of this research consist of providing new algorithms for the efficient search of activities in video, scene understanding based on interactions between activities, and the predicting of labels for new scenes

    A COLLABORATIVE FILTERING APPROACH TO PREDICT WEB PAGES OF INTEREST FROMNAVIGATION PATTERNS OF PAST USERS WITHIN AN ACADEMIC WEBSITE

    Get PDF
    This dissertation is a simulation study of factors and techniques involved in designing hyperlink recommender systems that recommend to users, web pages that past users with similar navigation behaviors found interesting. The methodology involves identification of pertinent factors or techniques, and for each one, addresses the following questions: (a) room for improvement; (b) better approach, if any; and (c) performance characteristics of the technique in environments that hyperlink recommender systems operate in. The following four problems are addressed:Web Page Classification. A new metric (PageRank × Inverse Links-to-Word count ratio) is proposed for classifying web pages as content or navigation, to help in the discovery of user navigation behaviors from web user access logs. Results of a small user study suggest that this metric leads to desirable results.Data Mining. A new apriori algorithm for mining association rules from large databases is proposed. The new algorithm addresses the problem of scaling of the classical apriori algorithm by eliminating an expensive joinstep, and applying the apriori property to every row of the database. In this study, association rules show the correlation relationships between user navigation behaviors and web pages they find interesting. The new algorithm has better space complexity than the classical one, and better time efficiency under some conditionsand comparable time efficiency under other conditions.Prediction Models for User Interests. We demonstrate that association rules that show the correlation relationships between user navigation patterns and web pages they find interesting can be transformed intocollaborative filtering data. We investigate collaborative filtering prediction models based on two approaches for computing prediction scores: using simple averages and weighted averages. Our findings suggest that theweighted averages scheme more accurately computes predictions of user interests than the simple averages scheme does.Clustering. Clustering techniques are frequently applied in the design of personalization systems. We studied the performance of the CLARANS clustering algorithm in high dimensional space in relation to the PAM and CLARA clustering algorithms. While CLARA had the best time performance, CLARANS resulted in clusterswith the lowest intra-cluster dissimilarities, and so was most effective in this regard
    corecore