21,677 research outputs found

    Invariant Manifolds and Rate Constants in Driven Chemical Reactions

    Get PDF
    Reaction rates of chemical reactions under nonequilibrium conditions can be determined through the construction of the normally hyperbolic invariant manifold (NHIM) [and moving dividing surface (DS)] associated with the transition state trajectory. Here, we extend our recent methods by constructing points on the NHIM accurately even for multidimensional cases. We also advance the implementation of machine learning approaches to construct smooth versions of the NHIM from a known high-accuracy set of its points. That is, we expand on our earlier use of neural nets, and introduce the use of Gaussian process regression for the determination of the NHIM. Finally, we compare and contrast all of these methods for a challenging two-dimensional model barrier case so as to illustrate their accuracy and general applicability.Comment: 28 pages, 13 figures, table of contents figur

    Scalable Estimation of Precision Maps in a MapReduce Framework

    Full text link
    This paper presents a large-scale strip adjustment method for LiDAR mobile mapping data, yielding highly precise maps. It uses several concepts to achieve scalability. First, an efficient graph-based pre-segmentation is used, which directly operates on LiDAR scan strip data, rather than on point clouds. Second, observation equations are obtained from a dense matching, which is formulated in terms of an estimation of a latent map. As a result of this formulation, the number of observation equations is not quadratic, but rather linear in the number of scan strips. Third, the dynamic Bayes network, which results from all observation and condition equations, is partitioned into two sub-networks. Consequently, the estimation matrices for all position and orientation corrections are linear instead of quadratic in the number of unknowns and can be solved very efficiently using an alternating least squares approach. It is shown how this approach can be mapped to a standard key/value MapReduce implementation, where each of the processing nodes operates independently on small chunks of data, leading to essentially linear scalability. Results are demonstrated for a dataset of one billion measured LiDAR points and 278,000 unknowns, leading to maps with a precision of a few millimeters.Comment: ACM SIGSPATIAL'16, October 31-November 03, 2016, Burlingame, CA, US

    Approximating Signed Distance Field to a Mesh by Artificial Neural Networks

    Get PDF
    Previous research has resulted in many representations of surfaces for rendering. However, for some approaches, an accurate representation comes at the expense of large data storage. Considering that Artifcial Neural Networks (ANNs) have been shown to achieve good performance in approximating non-linear functions in recent years, the potential to apply them to the problem of surface representation needs to be investigated. The goal in this research is to exploring how ANNs can effciently learn the Signed Distance Field (SDF) representation of shapes. Specifcally, we investigate how well different architectures of ANNs can learn 2D SDFs, 3D SDFs, and SDFs approximating a complex triangle mesh. In this research, we performed three main experiments to determine which ANN architectures and confgurations are suitable for learning SDFs by analyzing the errors in training and testing as well as rendering results. Also, three different pipelines for rendering general SDFs, grid-based SDFs, and ANN based SDFs were implemented to show the resulting images on screen. The following data are measured in this research project: the errors in training different architectures of ANNs; the errors in rendering SDFs; comparison between grid-based SDFs and ANN based SDFs. This work demonstrates the use of using ANNs to approximate the SDF to a mesh by learning the dataset through training data sampled near the mesh surface, which could be a useful technique in 3D reconstruction and rendering. We have found that the size of trained neural network is also much smaller than either the triangle mesh or grid-based SDFs, which could be useful for compression applications, and in software or hardware that has a strict requirement of memory size

    Medical imaging analysis with artificial neural networks

    Get PDF
    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging
    • …
    corecore