2,275 research outputs found

    A novel methodology based on hidden semi-Markov model for equipment health assessment

    Get PDF
    As one of the most important aspects of PHM in many application domains, health monitoring and management could maximize the equipment effectiveness within the allowed health ranges. This paper proposes a novel approach to assess the equipment health based on hidden semi-Markov model (HSMM), which is an extension of HMM and does not follow the unrealistic Markov chain assumption to provide more powerful modeling and analysis capability for real problems. With training the standard health state HSMM model by normal state data, the test data is inputted into the trained model in order to calculate the corresponding relative divergence, which is the deviation extent from the standard health state model. Then we can obtain the health index model for the equipment health monitoring and measurement. Moreover, the proposed HSMM based method is applied to the draught fan and showed to be effective

    Condition-based maintenance—an extensive literature review

    Get PDF
    This paper presents an extensive literature review on the field of condition-based maintenance (CBM). The paper encompasses over 4000 contributions, analysed through bibliometric indicators and meta-analysis techniques. The review adopts Factor Analysis as a dimensionality reduction, concerning the metric of the co-citations of the papers. Four main research areas have been identified, able to delineate the research field synthetically, from theoretical foundations of CBM; (i) towards more specific implementation strategies (ii) and then specifically focusing on operational aspects related to (iii) inspection and replacement and (iv) prognosis. The data-driven bibliometric results have been combined with an interpretative research to extract both core and detailed concepts related to CBM. This combined analysis allows a critical reflection on the field and the extraction of potential future research directions

    Failure Diagnosis and Prognosis of Safety Critical Systems: Applications in Aerospace Industries

    Get PDF
    Many safety-critical systems such as aircraft, space crafts, and large power plants are required to operate in a reliable and efficient working condition without any performance degradation. As a result, fault diagnosis and prognosis (FDP) is a research topic of great interest in these systems. FDP systems attempt to use historical and current data of a system, which are collected from various measurements to detect faults, diagnose the types of possible failures, predict and manage failures in advance. This thesis deals with FDP of safety-critical systems. For this purpose, two critical systems including a multifunctional spoiler (MFS) and hydro-control value system are considered, and some challenging issues from the FDP are investigated. This research work consists of three general directions, i.e., monitoring, failure diagnosis, and prognosis. The proposed FDP methods are based on data-driven and model-based approaches. The main aim of the data-driven methods is to utilize measurement data from the system and forecast the remaining useful life (RUL) of the faulty components accurately and efficiently. In this regard, two dierent methods are developed. A modular FDP method based on a divide and conquer strategy is presented for the MFS system. The modular structure contains three components:1) fault diagnosis unit, 2) failure parameter estimation unit and 3) RUL unit. The fault diagnosis unit identifies types of faults based on an integration of neural network (NN) method and discrete wavelet transform (DWT) technique. Failure parameter estimation unit observes the failure parameter via a distributed neural network. Afterward, the RUL of the system is predicted by an adaptive Bayesian method. In another work, an innovative data-driven FDP method is developed for hydro-control valve systems. The idea is to use redundancy in multi-sensor data information and enhance the performance of the FDP system. Therefore, a combination of a feature selection method and support vector machine (SVM) method is applied to select proper sensors for monitoring of the hydro-valve system and isolate types of fault. Then, adaptive neuro-fuzzy inference systems (ANFIS) method is used to estimate the failure path. Similarly, an online Bayesian algorithm is implemented for forecasting RUL. Model-based methods employ high-delity physics-based model of a system for prognosis task. In this thesis, a novel model-based approach based on an integrated extended Kalman lter (EKF) and Bayesian method is introduced for the MFS system. To monitor the MFS system, a residual estimation method using EKF is performed to capture the progress of the failure. Later, a transformation is utilized to obtain a new measure to estimate the degradation path (DP). Moreover, the recursive Bayesian algorithm is invoked to predict the RUL. Finally, relative accuracy (RA) measure is utilized to assess the performance of the proposed methods

    Review of Markov models for maintenance optimization in the context of offshore wind

    Get PDF
    The offshore environment poses a number of challenges to wind farm operators. Harsher climatic conditions typically result in lower reliability while challenges in accessibility make maintenance difficult. One of the ways to improve availability is to optimize the Operation and Maintenance (O&M) actions such as scheduled, corrective and proactive maintenance. Many authors have attempted to model or optimize O&M through the use of Markov models. Two examples of Markov models, Hidden Markov Models (HMMs) and Partially Observable Markov Decision Processes (POMDPs) are investigated in this paper. In general, Markov models are a powerful statistical tool, which has been successfully applied for component diagnostics, prognostics and maintenance optimization across a range of industries. This paper discusses the suitability of these models to the offshore wind industry. Existing models which have been created for the wind industry are critically reviewed and discussed. As there is little evidence of widespread application of these models, this paper aims to highlight the key factors required for successful application of Markov models to practical problems. From this, the paper identifies the necessary theoretical and practical gaps that must be resolved in order to gain broad acceptance of Markov models to support O&M decision making in the offshore wind industry

    Multidimensional prognostics for rotating machinery: A review

    Get PDF
    open access articleDetermining prognosis for rotating machinery could potentially reduce maintenance costs and improve safety and avail- ability. Complex rotating machines are usually equipped with multiple sensors, which enable the development of multidi- mensional prognostic models. By considering the possible synergy among different sensor signals, multivariate models may provide more accurate prognosis than those using single-source information. Consequently, numerous research papers focusing on the theoretical considerations and practical implementations of multivariate prognostic models have been published in the last decade. However, only a limited number of review papers have been written on the subject. This article focuses on multidimensional prognostic models that have been applied to predict the failures of rotating machinery with multiple sensors. The theory and basic functioning of these techniques, their relative merits and draw- backs and how these models have been used to predict the remnant life of a machine are discussed in detail. Furthermore, this article summarizes the rotating machines to which these models have been applied and discusses future research challenges. The authors also provide seven evaluation criteria that can be used to compare the reviewed techniques. By reviewing the models reported in the literature, this article provides a guide for researchers considering prognosis options for multi-sensor rotating equipment

    Failure Prognosis of Wind Turbine Components

    Get PDF
    Wind energy is playing an increasingly significant role in the World\u27s energy supply mix. In North America, many utility-scale wind turbines are approaching, or are beyond the half-way point of their originally anticipated lifespan. Accurate estimation of the times to failure of major turbine components can provide wind farm owners insight into how to optimize the life and value of their farm assets. This dissertation deals with fault detection and failure prognosis of critical wind turbine sub-assemblies, including generators, blades, and bearings based on data-driven approaches. The main aim of the data-driven methods is to utilize measurement data from the system and forecast the Remaining Useful Life (RUL) of faulty components accurately and efficiently. The main contributions of this dissertation are in the application of ALTA lifetime analysis to help illustrate a possible relationship between varying loads and generators reliability, a wavelet-based Probability Density Function (PDF) to effectively detecting incipient wind turbine blade failure, an adaptive Bayesian algorithm for modeling the uncertainty inherent in the bearings RUL prediction horizon, and a Hidden Markov Model (HMM) for characterizing the bearing damage progression based on varying operating states to mimic a real condition in which wind turbines operate and to recognize that the damage progression is a function of the stress applied to each component using data from historical failures across three different Canadian wind farms

    Cyber-Enabled Product Lifecycle Management: A Multi-Agent Framework

    Get PDF
    Trouble free use of a product and its associated services for a specified minimum period of time is a major factor to win the customer\u27s trust in the product. Rapid and easy serviceability to maintain its functionalities plays a key role in achieving this goal. However, the sustainability of such a model cannot be promised unless the current health status of the product is monitored and condition-based maintenance is exercised. Internet of Things (IoT), an important connectivity paradigm of recent times, which connects physical objects to the internet for real-time information exchange and execution of physical actions via wired/wireless protocols. While the literature is full of various feasibility and viability studies focusing on architecture, design, and model development aspects, there is limited work addressing an IoT-based health monitoring of systems having high collateral damage. This motivated the research to develop a multi-agent framework for monitoring the performance and predicting impending failure to prevent unscheduled maintenance and downtime over internet, referred to as for cyber-enabled product lifecycle management (C-PLM). The framework incorporates a number of autonomous agents, such as hard agent, soft agent, and wave agent, to establish network connectivity to collect and exchange real-time health information for prognostics and health management (PHM). The proposed framework will help manufacturers not only to resolve the warranty failure issues more efficiently and economically but also improve their corporate image. The framework further leads to efficient handling of warranty failure issues and reduces the chances of future failure, i.e., offering durable products. From the sustainability point of view, this framework also addresses the reusability of the parts that still have a significant value using the prognostics and health data. Finally, multi-agent implementation of the proposed approach using a power substations for IoT-based C-PLM is included to show is efficacy

    Prognostics health management: perspectives in engineering systems reliability prognostics

    Get PDF
    The Prognostic Health Management (PHM) has been asserting itself as the most promising methodology to enhance the effective reliability and availability of a product or system during its life-cycle conditions by detecting current and approaching failures, thus, providing mitigation of the system risks with reduced logistics and support costs. However, PHM is at an early stage of development, it also expresses some concerns about possible shortcomings of its methods, tools, metrics and standardization. These factors have been severely restricting the applicability of PHM and its adoption by the industry. This paper presents a comprehensive literature review about the PHM main general weaknesses. Exploring the research opportunities present in some recent publications, are discussed and outlined the general guide-lines for finding the answer to these issues.(undefined

    An intelligent information forwarder for healthcare big data systems with distributed wearable sensors

    Get PDF
    © 2016 IEEE. An increasing number of the elderly population wish to live an independent lifestyle, rather than rely on intrusive care programmes. A big data solution is presented using wearable sensors capable of carrying out continuous monitoring of the elderly, alerting the relevant caregivers when necessary and forwarding pertinent information to a big data system for analysis. A challenge for such a solution is the development of context-awareness through the multidimensional, dynamic and nonlinear sensor readings that have a weak correlation with observable human behaviours and health conditions. To address this challenge, a wearable sensor system with an intelligent data forwarder is discussed in this paper. The forwarder adopts a Hidden Markov Model for human behaviour recognition. Locality sensitive hashing is proposed as an efficient mechanism to learn sensor patterns. A prototype solution is implemented to monitor health conditions of dispersed users. It is shown that the intelligent forwarders can provide the remote sensors with context-awareness. They transmit only important information to the big data server for analytics when certain behaviours happen and avoid overwhelming communication and data storage. The system functions unobtrusively, whilst giving the users peace of mind in the knowledge that their safety is being monitored and analysed
    • …
    corecore