17,264 research outputs found

    Discriminative training for Convolved Multiple-Output Gaussian processes

    Get PDF
    Multi-output Gaussian processes (MOGP) are probability distributions over vector-valued functions, and have been previously used for multi-output regression and for multi-class classification. A less explored facet of the multi-output Gaussian process is that it can be used as a generative model for vector-valued random fields in the context of pattern recognition. As a generative model, the multi-output GP is able to handle vector-valued functions with continuous inputs, as opposed, for example, to hidden Markov models. It also offers the ability to model multivariate random functions with high dimensional inputs. In this report, we use a discriminative training criteria known as Minimum Classification Error to fit the parameters of a multi-output Gaussian process. We compare the performance of generative training and discriminative training of MOGP in emotion recognition, activity recognition, and face recognition. We also compare the proposed methodology against hidden Markov models trained in a generative and in a discriminative way

    Unimodal Multi-Feature Fusion and one-dimensional Hidden Markov Models for Low-Resolution Face Recognition

    Get PDF
    The objective of low-resolution face recognition is to identify faces from small size or poor quality images with varying pose, illumination, expression, etc. In this work, we propose a robust low face recognition technique based on one-dimensional Hidden Markov Models. Features of each facial image are extracted using three steps: firstly, both Gabor filters and Histogram of Oriented Gradients (HOG) descriptor are calculated. Secondly, the size of these features is reduced using the Linear Discriminant Analysis (LDA) method in order to remove redundant information. Finally, the reduced features are combined using Canonical Correlation Analysis (CCA) method. Unlike existing techniques using HMMs, in which authors consider each state to represent one facial region (eyes, nose, mouth, etc), the proposed system employs 1D-HMMs without any prior knowledge about the localization of interest regions in the facial image. Performance of the proposed method will be measured using the AR database

    PATH: Person Authentication using Trace Histories

    Full text link
    In this paper, a solution to the problem of Active Authentication using trace histories is addressed. Specifically, the task is to perform user verification on mobile devices using historical location traces of the user as a function of time. Considering the movement of a human as a Markovian motion, a modified Hidden Markov Model (HMM)-based solution is proposed. The proposed method, namely the Marginally Smoothed HMM (MSHMM), utilizes the marginal probabilities of location and timing information of the observations to smooth-out the emission probabilities while training. Hence, it can efficiently handle unforeseen observations during the test phase. The verification performance of this method is compared to a sequence matching (SM) method , a Markov Chain-based method (MC) and an HMM with basic Laplace Smoothing (HMM-lap). Experimental results using the location information of the UMD Active Authentication Dataset-02 (UMDAA02) and the GeoLife dataset are presented. The proposed MSHMM method outperforms the compared methods in terms of equal error rate (EER). Additionally, the effects of different parameters on the proposed method are discussed.Comment: 8 pages, 9 figures. Best Paper award at IEEE UEMCON 201
    corecore