541 research outputs found

    MRFalign: Protein Homology Detection through Alignment of Markov Random Fields

    Full text link
    Sequence-based protein homology detection has been extensively studied and so far the most sensitive method is based upon comparison of protein sequence profiles, which are derived from multiple sequence alignment (MSA) of sequence homologs in a protein family. A sequence profile is usually represented as a position-specific scoring matrix (PSSM) or an HMM (Hidden Markov Model) and accordingly PSSM-PSSM or HMM-HMM comparison is used for homolog detection. This paper presents a new homology detection method MRFalign, consisting of three key components: 1) a Markov Random Fields (MRF) representation of a protein family; 2) a scoring function measuring similarity of two MRFs; and 3) an efficient ADMM (Alternating Direction Method of Multipliers) algorithm aligning two MRFs. Compared to HMM that can only model very short-range residue correlation, MRFs can model long-range residue interaction pattern and thus, encode information for the global 3D structure of a protein family. Consequently, MRF-MRF comparison for remote homology detection shall be much more sensitive than HMM-HMM or PSSM-PSSM comparison. Experiments confirm that MRFalign outperforms several popular HMM or PSSM-based methods in terms of both alignment accuracy and remote homology detection and that MRFalign works particularly well for mainly beta proteins. For example, tested on the benchmark SCOP40 (8353 proteins) for homology detection, PSSM-PSSM and HMM-HMM succeed on 48% and 52% of proteins, respectively, at superfamily level, and on 15% and 27% of proteins, respectively, at fold level. In contrast, MRFalign succeeds on 57.3% and 42.5% of proteins at superfamily and fold level, respectively. This study implies that long-range residue interaction patterns are very helpful for sequence-based homology detection. The software is available for download at http://raptorx.uchicago.edu/download/.Comment: Accepted by both RECOMB 2014 and PLOS Computational Biolog

    Kernel methods in genomics and computational biology

    Full text link
    Support vector machines and kernel methods are increasingly popular in genomics and computational biology, due to their good performance in real-world applications and strong modularity that makes them suitable to a wide range of problems, from the classification of tumors to the automatic annotation of proteins. Their ability to work in high dimension, to process non-vectorial data, and the natural framework they provide to integrate heterogeneous data are particularly relevant to various problems arising in computational biology. In this chapter we survey some of the most prominent applications published so far, highlighting the particular developments in kernel methods triggered by problems in biology, and mention a few promising research directions likely to expand in the future

    Fast protein superfamily classification using principal component null space analysis.

    Get PDF
    The protein family classification problem, which consists of determining the family memberships of given unknown protein sequences, is very important for a biologist for many practical reasons, such as drug discovery, prediction of molecular functions and medical diagnosis. Neural networks and Bayesian methods have performed well on the protein classification problem, achieving accuracy ranging from 90% to 98% while running relatively slowly in the learning stage. In this thesis, we present a principal component null space analysis (PCNSA) linear classifier to the problem and report excellent results compared to those of neural networks and support vector machines. The two main parameters of PCNSA are linked to the high dimensionality of the dataset used, and were optimized in an exhaustive manner to maximize accuracy. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2005 .F74. Source: Masters Abstracts International, Volume: 44-03, page: 1400. Thesis (M.Sc.)--University of Windsor (Canada), 2005

    Improving model construction of profile HMMs for remote homology detection through structural alignment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Remote homology detection is a challenging problem in Bioinformatics. Arguably, profile Hidden Markov Models (pHMMs) are one of the most successful approaches in addressing this important problem. pHMM packages present a relatively small computational cost, and perform particularly well at recognizing remote homologies. This raises the question of whether structural alignments could impact the performance of pHMMs trained from proteins in the <it>Twilight Zone</it>, as structural alignments are often more accurate than sequence alignments at identifying motifs and functional residues. Next, we assess the impact of using structural alignments in pHMM performance.</p> <p>Results</p> <p>We used the SCOP database to perform our experiments. Structural alignments were obtained using the 3DCOFFEE and MAMMOTH-mult tools; sequence alignments were obtained using CLUSTALW, TCOFFEE, MAFFT and PROBCONS. We performed leave-one-family-out cross-validation over super-families. Performance was evaluated through ROC curves and paired two tailed t-test.</p> <p>Conclusion</p> <p>We observed that pHMMs derived from structural alignments performed significantly better than pHMMs derived from sequence alignment in low-identity regions, mainly below 20%. We believe this is because structural alignment tools are better at focusing on the important patterns that are more often conserved through evolution, resulting in higher quality pHMMs. On the other hand, sensitivity of these tools is still quite low for these low-identity regions. Our results suggest a number of possible directions for improvements in this area.</p

    The EM Algorithm and the Rise of Computational Biology

    Get PDF
    In the past decade computational biology has grown from a cottage industry with a handful of researchers to an attractive interdisciplinary field, catching the attention and imagination of many quantitatively-minded scientists. Of interest to us is the key role played by the EM algorithm during this transformation. We survey the use of the EM algorithm in a few important computational biology problems surrounding the "central dogma"; of molecular biology: from DNA to RNA and then to proteins. Topics of this article include sequence motif discovery, protein sequence alignment, population genetics, evolutionary models and mRNA expression microarray data analysis.Comment: Published in at http://dx.doi.org/10.1214/09-STS312 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Enhanced protein domain discovery using taxonomy

    Get PDF
    BACKGROUND: It is well known that different species have different protein domain repertoires, and indeed that some protein domains are kingdom specific. This information has not yet been incorporated into statistical methods for finding domains in sequences of amino acids. RESULTS: We show that by incorporating our understanding of the taxonomic distribution of specific protein domains, we can enhance domain recognition in protein sequences. We identify 4447 new instances of Pfam domains in the SP-TREMBL database using this technique, equivalent to the coverage increase given by the last 8.3% of Pfam families and to a 0.7% increase in the number of domain predictions. We use PSI-BLAST to cross-validate our new predictions. We also benchmark our approach using a SCOP test set of proteins of known structure, and demonstrate improvements relative to standard Hidden Markov model techniques. CONCLUSIONS: Explicitly including knowledge about the taxonomic distribution of protein domains can enhance protein domain recognition. Our method can also incorporate other context-specific domain distributions – such as domain co-occurrence and protein localisation

    Automated Protein Structure Classification: A Survey

    Full text link
    Classification of proteins based on their structure provides a valuable resource for studying protein structure, function and evolutionary relationships. With the rapidly increasing number of known protein structures, manual and semi-automatic classification is becoming ever more difficult and prohibitively slow. Therefore, there is a growing need for automated, accurate and efficient classification methods to generate classification databases or increase the speed and accuracy of semi-automatic techniques. Recognizing this need, several automated classification methods have been developed. In this survey, we overview recent developments in this area. We classify different methods based on their characteristics and compare their methodology, accuracy and efficiency. We then present a few open problems and explain future directions.Comment: 14 pages, Technical Report CSRG-589, University of Toront

    Pairwise alignment incorporating dipeptide covariation

    Full text link
    Motivation: Standard algorithms for pairwise protein sequence alignment make the simplifying assumption that amino acid substitutions at neighboring sites are uncorrelated. This assumption allows implementation of fast algorithms for pairwise sequence alignment, but it ignores information that could conceivably increase the power of remote homolog detection. We examine the validity of this assumption by constructing extended substitution matrixes that encapsulate the observed correlations between neighboring sites, by developing an efficient and rigorous algorithm for pairwise protein sequence alignment that incorporates these local substitution correlations, and by assessing the ability of this algorithm to detect remote homologies. Results: Our analysis indicates that local correlations between substitutions are not strong on the average. Furthermore, incorporating local substitution correlations into pairwise alignment did not lead to a statistically significant improvement in remote homology detection. Therefore, the standard assumption that individual residues within protein sequences evolve independently of neighboring positions appears to be an efficient and appropriate approximation

    Augmented training of hidden Markov models to recognize remote homologs via simulated evolution

    Get PDF
    Motivation: While profile hidden Markov models (HMMs) are successful and powerful methods to recognize homologous proteins, they can break down when homology becomes too distant due to lack of sufficient training data. We show that we can improve the performance of HMMs in this domain by using a simple simulated model of evolution to create an augmented training set

    The CATH Domain Structure Database and related resources Gene3D and DHS provide comprehensive domain family information for genome analysis

    Get PDF
    The CATH database of protein domain structures (http://www.biochem.ucl.ac.uk/bsm/cath/) currently contains 43 229 domains classified into 1467 superfamilies and 5107 sequence families. Each structural family is expanded with sequence relatives from GenBank and completed genomes, using a variety of efficient sequence search protocols and reliable thresholds. This extended CATH protein family database contains 616 470 domain sequences classified into 23 876 sequence families. This results in the significant expansion of the CATHHMMmodel library to include models built from the CATH sequence relatives, giving a10%increase in coveragefor detecting remote homologues. An improved Dictionary of Homologous superfamilies (DHS) (http://www.biochem.ucl.ac.uk/bsm/dhs/) containing specific sequence, structural and functional information for each superfamily in CATH considerably assists manual validation of homologues. Information on sequence relatives in CATH superfamilies, GenBank and completed genomes is presented in the CATH associated DHS and Gene3D resources. Domain partnership information can be obtained from Gene3D (http://www.biochem.ucl.ac.uk/bsm/cath/Gene3D/). A new CATH server has been implemented (http://www.biochem.ucl.ac.uk/cgi-bin/cath/CathServer.pl) providing automatic classification of newly determined sequences and structures using a suite of rapid sequence and structure comparison methods. The statistical significance of matches is assessed and links are provided to the putative superfamily or fold group to which the query sequence or structure is assigned
    corecore