335 research outputs found

    Tone classification of syllable -segmented Thai speech based on multilayer perceptron

    Get PDF
    Thai is a monosyllabic and tonal language. Thai makes use of tone to convey lexical information about the meaning of a syllable. Thai has five distinctive tones and each tone is well represented by a single F0 contour pattern. In general, a Thai syllable with a different tone has a different lexical meaning. Thus, to completely recognize a spoken Thai syllable, a speech recognition system has not only to recognize a base syllable but also to correctly identify a tone. Hence, tone classification of Thai speech is an essential part of a Thai speech recognition system.;In this study, a tone classification of syllable-segmented Thai speech which incorporates the effects of tonal coarticulation, stress and intonation was developed. Automatic syllable segmentation, which performs the segmentation on the training and test utterances into syllable units, was also developed. The acoustical features including fundamental frequency (F0), duration, and energy extracted from the processing syllable and neighboring syllables were used as the main discriminating features. A multilayer perceptron (MLP) trained by backpropagation method was employed to classify these features. The proposed system was evaluated on 920 test utterances spoken by five male and three female Thai speakers who also uttered the training speech. The proposed system achieved an average accuracy rate of 91.36%

    Standard Yorùbá context dependent tone identification using Multi-Class Support Vector Machine (MSVM)

    Get PDF
    Most state-of-the-art large vocabulary continuous speech recognition systems employ context dependent (CD) phone units, however, the CD phone units are not efficient in capturing long-term spectral dependencies of tone in most tone languages. The Standard Yorùbá (SY) is a language composed of syllable with tones and requires different method for the acoustic modeling. In this paper, a context dependent tone acoustic model was developed. Tone unit is assumed as syllables, amplitude magnified difference function (AMDF) was used to derive the utterance wide F contour, followed by automatic syllabification and tri-syllable forced alignment with speech phonetization alignment and syllabification SPPAS tool. For classification of the context dependent (CD) tone, slope and intercept of F values were extracted from each segmented unit. Supervised clustering scheme was utilized to partition CD tri-tone based on category and normalized based on some statistics to derive the acoustic feature vectors. Multi-class support vector machine (MSVM) was used for tri-tone training. From the experimental results, it was observed that the word recognition accuracy obtained from the MSVM tri-tone system based on dynamic programming tone embedded features was comparable with phone features. A best parameter tuning was obtained for 10-fold cross validation and overall accuracy was 97.5678%. In term of word error rate (WER), the MSVM CD tri-tone system outperforms the hidden Markov model tri-phone system with WER of 44.47%.Keywords: Syllabification, Standard Yorùbá, Context Dependent Tone, Tri-tone Recognitio

    Survey of Mandarin Chinese Speech Recognition Techniques

    Get PDF

    Improving the Speech Intelligibility By Cochlear Implant Users

    Get PDF
    In this thesis, we focus on improving the intelligibility of speech for cochlear implants (CI) users. As an auditory prosthetic device, CI can restore hearing sensations for most patients with profound hearing loss in both ears in a quiet background. However, CI users still have serious problems in understanding speech in noisy and reverberant environments. Also, bandwidth limitation, missing temporal fine structures, and reduced spectral resolution due to a limited number of electrodes are other factors that raise the difficulty of hearing in noisy conditions for CI users, regardless of the type of noise. To mitigate these difficulties for CI listener, we investigate several contributing factors such as the effects of low harmonics on tone identification in natural and vocoded speech, the contribution of matched envelope dynamic range to the binaural benefits and contribution of low-frequency harmonics to tone identification in quiet and six-talker babble background. These results revealed several promising methods for improving speech intelligibility for CI patients. In addition, we investigate the benefits of voice conversion in improving speech intelligibility for CI users, which was motivated by an earlier study showing that familiarity with a talker’s voice can improve understanding of the conversation. Research has shown that when adults are familiar with someone’s voice, they can more accurately – and even more quickly – process and understand what the person is saying. This theory identified as the “familiar talker advantage” was our motivation to examine its effect on CI patients using voice conversion technique. In the present research, we propose a new method based on multi-channel voice conversion to improve the intelligibility of transformed speeches for CI patients
    • …
    corecore