610 research outputs found

    Multichannel dynamic modeling of non-Gaussian mixtures

    Full text link
    [EN] This paper presents a novel method that combines coupled hidden Markov models (HMM) and non Gaussian mixture models based on independent component analyzer mixture models (ICAMM). The proposed method models the joint behavior of a number of synchronized sequential independent component analyzer mixture models (SICAMM), thus we have named it generalized SICAMM (G-SICAMM). The generalization allows for flexible estimation of complex data densities, subspace classification, blind source separation, and accurate modeling of both local and global dynamic interactions. In this work, the structured result obtained by G-SICAMM was used in two ways: classification and interpretation. Classification performance was tested on an extensive number of simulations and a set of real electroencephalograms (EEG) from epileptic patients performing neuropsychological tests. G-SICAMM outperformed the following competitive methods: Gaussian mixture models, HMM, Coupled HMM, ICAMM, SICAMM, and a long short-term memory (LSTM) recurrent neural network. As for interpretation, the structured result returned by G-SICAMM on EEGs was mapped back onto the scalp, providing a set of brain activations. These activations were consistent with the physiological areas activated during the tests, thus proving the ability of the method to deal with different kind of data densities and changing non-stationary and non-linear brain dynamics. (C) 2019 Elsevier Ltd. All rights reserved.This work was supported by Spanish Administration (Ministerio de Economia y Competitividad) and European Union (FEDER) under grants TEC2014-58438-R and TEC2017-84743-P.Safont Armero, G.; Salazar Afanador, A.; Vergara DomĂ­nguez, L.; Gomez, E.; Villanueva, V. (2019). Multichannel dynamic modeling of non-Gaussian mixtures. Pattern Recognition. 93:312-323. https://doi.org/10.1016/j.patcog.2019.04.022S3123239

    Linking fast and slow: the case for generative models

    Full text link
    A pervasive challenge in neuroscience is testing whether neuronal connectivity changes over time due to specific causes, such as stimuli, events, or clinical interventions. Recent hardware innovations and falling data storage costs enable longer, more naturalistic neuronal recordings. The implicit opportunity for understanding the self-organised brain calls for new analysis methods that link temporal scales: from the order of milliseconds over which neuronal dynamics evolve, to the order of minutes, days or even years over which experimental observations unfold. This review article demonstrates how hierarchical generative models and Bayesian inference help to characterise neuronal activity across different time scales. Crucially, these methods go beyond describing statistical associations among observations and enable inference about underlying mechanisms. We offer an overview of fundamental concepts in state-space modeling and suggest a taxonomy for these methods. Additionally, we introduce key mathematical principles that underscore a separation of temporal scales, such as the slaving principle, and review Bayesian methods that are being used to test hypotheses about the brain with multi-scale data. We hope that this review will serve as a useful primer for experimental and computational neuroscientists on the state of the art and current directions of travel in the complex systems modelling literature.Comment: 20 pages, 5 figure

    Count data time series models and their applications

    Get PDF
    “Due to fast developments of advanced sensors, count data sets have become ubiquitous in many fields. Modeling and forecasting such time series have generated great interest. Modeling can shed light on the behavior of the count series and to see how they are related to other factors such as the environmental conditions under which the data are generated. In this research, three approaches to modeling such count data are proposed. First, a periodic autoregressive conditional Poisson (PACP) model is proposed as a natural generalization of the autoregressive conditional Poisson (ACP) model. By allowing for cyclical variations in the parameters of the model, it provides a way to explain the periodicity inherent in many count data series. For example, in epidemiology the prevalence of a disease may depend on the season. The autoregressive conditional Poisson hidden Markov model (ACP-HMM) is developed to deal with count data time series whose mean, conditional on the past, is a function of previous observations, with this relationship possibly determined by an unobserved process that switches its state or regime as time progresses. This model, in a sense, is the combination of the discrete version of the autoregressive conditional heteroscedastic (ARCH) formulation and the Poisson hidden Markov model. Both the above models address the frequently present serial correlation and the clustering of high or low counts observed in time series of count data, while at the same time allowing the underlying data generating mechanism to change cyclically or according to a hidden Markov process. Applications to empirical data sets show that these models provide a better fit than the standard ACP models. In addition to the above models, a modification of a zero-inflated Poisson model is used to analyze activity counts of the fruit fly. The model captures the dynamic structure of activity patterns and the fly\u27s propensity to sleep. The obtained results when fed to a convolutional neural network provides the possibility of building a predictive model to identify fruit flies with short and long lifespans”--Abstract, page iv

    ISBIS 2016: Meeting on Statistics in Business and Industry

    Get PDF
    This Book includes the abstracts of the talks presented at the 2016 International Symposium on Business and Industrial Statistics, held at Barcelona, June 8-10, 2016, hosted at the Universitat Politècnica de Catalunya - Barcelona TECH, by the Department of Statistics and Operations Research. The location of the meeting was at ETSEIB Building (Escola Tecnica Superior d'Enginyeria Industrial) at Avda Diagonal 647. The meeting organizers celebrated the continued success of ISBIS and ENBIS society, and the meeting draw together the international community of statisticians, both academics and industry professionals, who share the goal of making statistics the foundation for decision making in business and related applications. The Scientific Program Committee was constituted by: David Banks, Duke University Amílcar Oliveira, DCeT - Universidade Aberta and CEAUL Teresa A. Oliveira, DCeT - Universidade Aberta and CEAUL Nalini Ravishankar, University of Connecticut Xavier Tort Martorell, Universitat Politécnica de Catalunya, Barcelona TECH Martina Vandebroek, KU Leuven Vincenzo Esposito Vinzi, ESSEC Business Schoo

    NOVEL GRAPHICAL MODEL AND NEURAL NETWORK FRAMEWORKS FOR AUTOMATED SEIZURE DETECTION, TRACKING, AND LOCALIZATION IN FOCAL EPILEPSY

    Get PDF
    Epilepsy is a heterogenous neurological disorder characterized by recurring and unprovoked seizures. It is estimated that 60% of epilepsy patients suffer from focal epilepsy, where seizures originate from one or more discrete locations within the brain. After onset, focal seizure activity spreads, involving more regions in the cortex. Diagnosis and therapeutic planning for patients with focal epilepsy crucially depends on being able to detect epileptic activity as it starts and localize its origin. Due to the subtlety of seizure activity and the complex spatio-temporal propagation patterns of seizure activity, detection and localization of seizure by visual inspection is time-consuming and must be done by highly trained neurologists. In this thesis, we detail modeling approaches to identify and capture the spatio-temporal ictal propagation of focal epileptic seizures. Through novel multi-scale frameworks, information fusion between signal paths, and hybrid architectures, models that capture the underlying seizure propagation phenomena are developed. The first half relies on graphical modeling approaches to detect seizures and track their activity through the space of EEG electrodes. A coupled hidden Markov model approach to seizure propagation is described. This model is subsequently improved through the addition of convolutional neural network based likelihood functions, removing the reliance on hand designed feature extraction. Through the inclusion of a hierarchical switching chain and localization variables, the model is revised to capture multi-scale seizure onset and spreading information. In the second half of this thesis, end-to-end neural network architectures for seizure detection and localization are developed. First, combination convolutional and recurrent neural networks are used to identify seizure activity at the level of individual EEG channels. Through novel aggregation, the network is trained to recognize seizure activity, track its evolution, and coarsely localize seizure onset from lower resolution labels. Next, a multi-scale network capable of analyzing the global and electrode level signals is developed for challenging task of end-to-end seizure localization. Onset location maps are defined for each patient and an ensemble of weakly supervised loss functions are used in a multi-task learning framework to train the architecture
    • …
    corecore