237 research outputs found

    Probabilistic graphical models for brain computer interfaces

    Get PDF
    Brain computer interfaces (BCI) are systems that aim to establish a new communication path for subjects who su er from motor disabilities, allowing interaction with the environment through computer systems. BCIs make use of a diverse group of physiological phenomena recorded using electrodes placed on the scalp (Electroencephalography, EEG) or electrodes placed directly over the brain cortex (Electrocorticography, ECoG). One commonly used phenomenon is the activity observed in specific areas of the brain in response to external events, called Event Related Potentials (ERP). Among those, a type of response called P300 is the most used phenomenon. The P300 has found application in spellers that make use of the brain's response to the presentation of a sequence of visual stimuli. Another commonly used phenomenon is the synchronization or desynchronization of brain rhythms during the execution or imagination of a motor task, which can be used to differentiate between two or more subject intentions. In the most basic scenario, a BCI system calculates the differences in the power of the EEG rhythms during execution of different tasks. Based on those differences, the BCI decides which task has been executed (e.g., motor imagination of left or right hand). Current approaches are mainly based on machine learning techniques that learn the distribution of the power values of the brain signals for each of the possible classes. In this thesis, making use of EEG and ECoG recording methods, we propose the use of probabilistic graphical models for brain computer interfaces. In the case of ERPs, in particular P300-based spellers, we propose the incorporation of language models at the level of words to increase significantly the performance of the spelling system. The proposed framework allows also the incorporation of different methods that take into account language models based on n-grams, all of this in an integrated structure whose parameters can be efficiently learned. In the context of execution or imagination of motor tasks, we propose techniques that take into account the temporal structure of the signals. Stochastic processes that model temporal dynamics of the brain signals in different frequency bands such as non-parametric Bayesian hidden Markov models are proposed in order to solve the problem of selection of the number of brain states during the execution of motor tasks as well as the selection of the number of components used to model the distribution of the brain signals. Following up on the same line of thought, hidden conditional random fields are proposed for classification of synchronous motor tasks. The combination of hidden states with the discriminative power of conditional random fields is shown to increase the classification performance of imaginary motor movements. In the context of asynchronous BCIs, we propose a method based on latent dynamic conditional random fields that is capable of modeling the internal temporal dynamics related to the generation of the brain signals, and external brain dynamics related to the execution of different mental tasks. Finally, in the context of asynchronous BCIs a model based on discriminative graphical models is presented for continuous classification of finger movements from ECoG data. We show that the incorporation of temporal dynamics of the brain signals in the classification stages increases significantly the classification accuracy of different mental states which can lead to a more effective interaction between the subject and the environment

    Electroencephalography brain computer interface using an asynchronous protocol

    Get PDF
    A dissertation submitted to the Faculty of Science, University of the Witwatersrand, in ful llment of the requirements for the degree of Master of Science. October 31, 2016.Brain Computer Interface (BCI) technology is a promising new channel for communication between humans and computers, and consequently other humans. This technology has the potential to form the basis for a paradigm shift in communication for people with disabilities or neuro-degenerative ailments. The objective of this work is to create an asynchronous BCI that is based on a commercial-grade electroencephalography (EEG) sensor. The BCI is intended to allow a user of possibly low income means to issue control signals to a computer by using modulated cortical activation patterns as a control signal. The user achieves this modulation by performing a mental task such as imagining waving the left arm until the computer performs the action intended by the user. In our work, we make use of the Emotiv EPOC headset to perform the EEG measurements. We validate our models by assessing their performance when the experimental data is collected using clinical-grade EEG technology. We make use of a publicly available data-set in the validation phase. We apply signal processing concepts to extract the power spectrum of each electrode from the EEG time-series data. In particular, we make use of the fast Fourier transform (FFT). Specific bands in the power spectra are used to construct a vector that represents an abstract state the brain is in at that particular moment. The selected bands are motivated by insights from neuroscience. The state vector is used in conjunction with a model that performs classification. The exact purpose of the model is to associate the input data with an abstract classification result which can then used to select the appropriate set of instructions to be executed by the computer. In our work, we make use of probabilistic graphical models to perform this association. The performance of two probabilistic graphical models is evaluated in this work. As a preliminary step, we perform classification on pre-segmented data and we assess the performance of the hidden conditional random fields (HCRF) model. The pre-segmented data has a trial structure such that each data le contains the power spectra measurements associated with only one mental task. The objective of the assessment is to determine how well the HCRF models the spatio-spectral and temporal relationships in the EEG data when mental tasks are performed in the aforementioned manner. In other words, the HCRF is to model the internal dynamics of the data corresponding to the mental task. The performance of the HCRF is assessed over three and four classes. We find that the HCRF can model the internal structure of the data corresponding to different mental tasks. As the final step, we perform classification on continuous data that is not segmented and assess the performance of the latent dynamic conditional random fields (LDCRF). The LDCRF is used to perform sequence segmentation and labeling at each time-step so as to allow the program to determine which action should be taken at that moment. The sequence segmentation and labeling is the primary capability that we require in order to facilitate an asynchronous BCI protocol. The continuous data has a trial structure such that each data le contains the power spectra measurements associated with three different mental tasks. The mental tasks are randomly selected at 15 second intervals. The objective of the assessment is to determine how well the LDCRF models the spatio-spectral and temporal relationships in the EEG data, both within each mental task and in the transitions between mental tasks. The performance of the LDCRF is assessed over three classes for both the publicly available data and the data we obtained using the Emotiv EPOC headset. We find that the LDCRF produces a true positive classification rate of 82.31% averaged over three subjects, on the validation data which is in the publicly available data. On the data collected using the Emotiv EPOC, we find that the LDCRF produces a true positive classification rate of 42.55% averaged over two subjects. In the two assessments involving the LDCRF, the random classification strategy would produce a true positive classification rate of 33.34%. It is thus clear that our classification strategy provides above random performance on the two groups of data-sets. We conclude that our results indicate that creating low-cost EEG based BCI technology holds potential for future development. However, as discussed in the final chapter, further work on both the software and low-cost hardware aspects is required in order to improve the performance of the technology as it relates to the low-cost context.LG201

    Study of Adaptation Methods Towards Advanced Brain-computer Interfaces

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Hysteresis thresholding for Wavelet denosing applied to P300 single-trial detection

    Get PDF
    Template-based analysis techniques are good candidates to robustly detect transient temporal graphic elements (e.g. event-related potential, k-complex, sleep spindles, vertex waves, spikes) in noisy and multi-sources electro-encephalographic signals. More specifically, we present the significant impact on a large dataset of wavelet denoisings to detect evoked potentials in a single-trial P300 speller. We apply the classical thresholds selection rules algorithms and compare them with the hysteresis algorithm presented in \cite{Ranta10hyst} which combine the classical thresholds to detect blocks of significant wavelets coefficients based on the graph structure of the wavelet decomposition

    Executed movement using EEG signals through a naive bayes classifier

    Get PDF
    Recent years have witnessed a rapid development of brain-computer interface (BCI) technology. An independent BCI is a communication system for controlling a device by human intension, e.g., a computer, a wheelchair or a neuroprosthes is, not depending on the brain’s normal output pathways of peripheral nerves and muscles, but on detectable signals that represent responsive or intentional brain activities. This paper presents a comparative study of the usage of the linear discriminant analysis (LDA) and the naive Bayes (NB) classifiers on describing both right- and left-hand movement through electroencephalographic signal (EEG) acquisition. For the analysis, we considered the following input features: the energy of the segments of a band pass-filtered signal with the frequency band in sensorimotor rhythms and the components of the spectral energy obtained through the Welch method. We also used the common spatial pattern (CSP) filter, so as to increase the discriminatory activity among movement classes. By using the database generated by this experiment, we obtained hit rates up to 70%. The results are compatible with previous studies

    Reconnaissance de l'émotion thermique

    Full text link
    Pour améliorer les interactions homme-ordinateur dans les domaines de la santé, de l'e-learning et des jeux vidéos, de nombreux chercheurs ont étudié la reconnaissance des émotions à partir des signaux de texte, de parole, d'expression faciale, de détection d'émotion ou d'électroencéphalographie (EEG). Parmi eux, la reconnaissance d'émotion à l'aide d'EEG a permis une précision satisfaisante. Cependant, le fait d'utiliser des dispositifs d'électroencéphalographie limite la gamme des mouvements de l'utilisateur. Une méthode non envahissante est donc nécessaire pour faciliter la détection des émotions et ses applications. C'est pourquoi nous avons proposé d'utiliser une caméra thermique pour capturer les changements de température de la peau, puis appliquer des algorithmes d'apprentissage machine pour classer les changements d'émotion en conséquence. Cette thèse contient deux études sur la détection d'émotion thermique avec la comparaison de la détection d'émotion basée sur EEG. L'un était de découvrir les profils de détection émotionnelle thermique en comparaison avec la technologie de détection d'émotion basée sur EEG; L'autre était de construire une application avec des algorithmes d'apprentissage en machine profonds pour visualiser la précision et la performance de la détection d'émotion thermique et basée sur EEG. Dans la première recherche, nous avons appliqué HMM dans la reconnaissance de l'émotion thermique, et après avoir comparé à la détection de l'émotion basée sur EEG, nous avons identifié les caractéristiques liées à l'émotion de la température de la peau en termes d'intensité et de rapidité. Dans la deuxième recherche, nous avons mis en place une application de détection d'émotion qui supporte à la fois la détection d'émotion thermique et la détection d'émotion basée sur EEG en appliquant les méthodes d'apprentissage par machine profondes - Réseau Neuronal Convolutif (CNN) et Mémoire à long court-terme (LSTM). La précision de la détection d'émotion basée sur l'image thermique a atteint 52,59% et la précision de la détection basée sur l'EEG a atteint 67,05%. Dans une autre étude, nous allons faire plus de recherches sur l'ajustement des algorithmes d'apprentissage machine pour améliorer la précision de détection d'émotion thermique.To improve computer-human interactions in the areas of healthcare, e-learning and video games, many researchers have studied on recognizing emotions from text, speech, facial expressions, emotion detection, or electroencephalography (EEG) signals. Among them, emotion recognition using EEG has achieved satisfying accuracy. However, wearing electroencephalography devices limits the range of user movement, thus a noninvasive method is required to facilitate the emotion detection and its applications. That’s why we proposed using thermal camera to capture the skin temperature changes and then applying machine learning algorithms to classify emotion changes accordingly. This thesis contains two studies on thermal emotion detection with the comparison of EEG-base emotion detection. One was to find out the thermal emotional detection profiles comparing with EEG-based emotion detection technology; the other was to implement an application with deep machine learning algorithms to visually display both thermal and EEG based emotion detection accuracy and performance. In the first research, we applied HMM in thermal emotion recognition, and after comparing with EEG-base emotion detection, we identified skin temperature emotion-related features in terms of intensity and rapidity. In the second research, we implemented an emotion detection application supporting both thermal emotion detection and EEG-based emotion detection with applying the deep machine learning methods – Convolutional Neutral Network (CNN) and LSTM (Long- Short Term Memory). The accuracy of thermal image based emotion detection achieved 52.59% and the accuracy of EEG based detection achieved 67.05%. In further study, we will do more research on adjusting machine learning algorithms to improve the thermal emotion detection precision

    Novas estratégias de pré-processamento, extração de atributos e classificação em sistemas BCI

    Get PDF
    Orientador: Romis Ribeiro de Faissol AttuxTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: As interfaces cérebro-computador (BCIs) visam controlar um dispositivo externo, utilizando diretamente os sinais cerebrais do usuário. Tais sistemas requerem uma série de etapas para processar e extrair atributos relevantes dos sinais observados para interpretar correta e eficientemente as intenções do usuário. Embora o campo tenha se desenvolvido continuamente e algumas dificuldades tenham sido superadas, ainda é necessário aumentar a capacidade de uso, melhorando sua capacidade de classificação e aumentando a confiabilidade de sua resposta. O objetivo clássico da pesquisa de BCI é apoiar a comunicação e o controle para usuários com comunicação prejudicada devido a doenças ou lesões. Aplicações típicas das BCI são a operação de cursores de interface, programas de escrita de texto ou dispositivos externos, como cadeiras de rodas, robôs e diferentes tipos de próteses. O usuário envia informações moduladas para a BCI, realizando tarefas mentais que produzem padrões cerebrais distintos. A BCI adquire sinais do cérebro do usuário e os traduz em comunicação adequada. Esta tese tem como objetivo desenvolver uma comunicação BCI não invasiva mais rápida e confiável baseada no estudo de diferentes técnicas que atuam nas etapas de processamento do sinal, considerando dois aspectos principais, a abordagem de aprendizado de máquina e a redução da complexidade na tarefa de aprendizado dos padrões mentais pelo usuário. A pesquisa foi focada em dois paradigmas de BCI, Imagética Motora (IM) e o potencial relacionado ao evento P300. Algoritmos de processamento de sinais para a detecção de ambos os padrões cerebrais foram aplicados e avaliados. O aspecto do pré-processamento foi a primeira perspectiva estudada, considerando como destacar a resposta dos fenômenos cerebrais, em relação ao ruído e a outras fontes de informação que talvez distorçam o sinal de EEG; isso em si é um passo que influenciará diretamente a resposta dos seguintes blocos de processamento e classificação. A Análise de Componente Independente (ICA) foi usada em conjunto com métodos de seleção de atributos e diferentes classificadores para separar as fontes originais relacionadas à dessincronização produzida pelo fenômeno de IM; esta foi uma tentativa de criar um tipo de filtro espacial que permitisse o sinal ser pré-processado, reduzindo a influência do ruído. Além disso, os resultados dos valores de classificação foram analisados considerando a comparação com métodos padrão de pré-processamento, como o filtro CAR. Os resultados mostraram que é possível separar os componentes relacionados à atividade motora. A proposta da ICA, em média, foi 4\% mais alta em porcentagem de precisão de classificação do que os resultados obtidos usando o CAR, ou quando nenhum filtro foi usado. O papel dos métodos que estudam a conectividade de diferentes áreas do cérebro foi avaliado como a segunda contribuição deste trabalho; Isso permitiu considerar aspectos que contemplam a complexidade da resposta cerebral de um usuário. A área da BCI precisa de uma interpretação mais profunda do que acontece no nível do cérebro em vários dos fenômenos estudados. A técnica utilizada para construir grafos de conectividade funcional foi a correntropia, esta medida foi utilizada para quantificar a similaridade; uma comparação foi feita usando também, as medidas de correlação de Spearman e Pearson. A conectividade funcional relaciona diferentes áreas do cérebro analisando sua atividade cerebral, de modo que o estudo do grafo foi avaliado utilizando três medidas de centralidade, onde a importância de um nó na rede é medida. Também, dois tipos de classificadores foram testados, comparando os resultados no nível de precisão de classificação. Em conclusão, a correntropia pode trazer mais informações para o estudo da conectividade do que o uso da correlação simples, o que trouxe melhorias nos resultados da classificação, especialmente quando ela foi utilizada com o classificador ELM. Finalmente, esta tese demonstra que os BCIs podem fornecer comunicação efetiva em uma aplicação onde a predição da resposta de classificação foi modelada, o que permitiu a otimização dos parâmetros do processamento de sinal realizado usando o filtro espacial xDAWN e um classificador FLDA para o problema do speller P300, buscando a melhor resposta para cada usuário. O modelo de predição utilizado foi Bayesiano e confirmou os resultados obtidos com a operação on-line do sistema, permitindo otimizar os parâmetros tanto do filtro quanto do classificador. Desta forma, foi visto que usando filtros com poucos canais de entrada, o modelo otimizado deu melhores resultados de acurácia de classificação do que os valores inicialmente obtidos ao treinar o filtro xDAWN para os mesmos casos. Os resultados obtidos mostraram que melhorias nos métodos do transdutor BCI, no pré-processamento, extração de características e classificação constituíram a base para alcançar uma comunicação BCI mais rápida e confiável. O avanço nos resultados da classificação foi obtido em todos os casos, comparado às técnicas que têm sido amplamente utilizadas e já mostraram eficácia para esse tipo de problema. No entanto, ainda há aspectos a considerar da resposta dos sujeitos para tipos específicos de paradigmas, lembrando que sua resposta pode variar ao longo de diferentes dias e as implicações reais disso na definição e no uso de diferentes métodos de processamento de sinalAbstract: Brain-computer interfaces (BCIs) aim to control an external device by directly employing user's brain signals. Such systems require a series of steps to process and extract relevant features from the observed signals to correctly and efficiently interpret the user's intentions. Although the field has been continuously developing and some difficulties have been overcome, it is still necessary to increase usability by enhancing their classification capacity and increasing the reliability of their response. The classical objective of BCI research is to support communication and control for users with impaired communication due to illness or injury. Typical BCI applications are the operation of interface cursors, spelling programs or external devices, such as wheelchairs, robots and different types of prostheses. The user sends modulated information to the BCI by engaging in mental tasks that produce distinct brain patterns. The BCI acquires signals from the user¿s brain and translates them into suitable communication. This thesis aims to develop faster and more reliable non-invasive BCI communication based on the study of different techniques that serve in the signal processing stages, considering two principal aspects, the machine learning approach, and the reduction of the complexity in the task of learning the mental patterns by the user. Research was focused on two BCI paradigms, Motor Imagery (MI) and the P300 event related potential (ERP). Signal processing algorithms for the detection of both brain patterns were applied and evaluated. The aspect of the pre-processing was the first perspective studied to consider how to highlight the response of brain phenomena, in relation to noise and other sources of information that maybe distorting the EEG signal; this in itself is a step that will directly influence the response of the following blocks of processing and classification. The Independent Component Analysis (ICA) was used in conjunction with feature selection methods and different classifiers to separate the original sources that are related to the desynchronization produced by MI phenomenon; an attempt was made to create a type of spatial filter that pre-processed the signal, reducing the influence of the noise. Furthermore, some of the classifications values were analyzed considering comparison when used other standard pre-processing methods, as the CAR filter. The results showed that it is possible to separate the components related to motor activity. The ICA proposal on average were 4\% higher in percent of classification accuracy than those obtained using CAR, or when no filter was used. The role of methods that study the connectivity of different brain areas were evaluated as the second contribution of this work; this allowed to consider aspects that contemplate the complexity of the brain response of a user. The area of BCI needs a deeper interpretation of what happens at the brain level in several of the studied phenomena. The technique used to build functional connectivity graphs was correntropy, this quantity was used to measure similarity, a comparison was made using also, the Spearman and Pearson correlation. Functional connectivity relates different brain areas activity, so the study of the graph was evaluated using three measures of centrality of graph, where the importance of a node in the network is measured. In addition, two types of classifiers were tested, comparing the results at the level of classification precision. In conclusion, the correntropy can bring more information for the study of connectivity than the use of the simple correlation, which brought improvements in the classification results especially when it was used with the ELM classifier. Finally, this thesis demonstrates that BCIs can provide effective communication in an application where the prediction of the classification response was modeled, which allowed the optimization of the parameters of the signal processing performed using the xDAWN spatial filter and a FLDA classifier for the problem of the P300 speller, seeking the best response for each user. The prediction model used was Bayesian and confirmed the results obtained with the on-line operation of the system, thus allowing to optimize the parameters of both the filter and the classifier. In this way it was seen that using filters with few inputs the optimized model gave better results of acuraccy classification than the values initially obtained when the training ofthe xDAWN filter was made for the same cases. The obtained results showed that improvements in the BCI transducer, pre-processing, feature extraction and classification methods constituted the basis to achieve faster and more reliable BCI communication. The advance in the classification results were obtained in all cases, compared to techniques that have been widely used and had already shown effectiveness for this type of problemsDoutoradoEngenharia de ComputaçãoDoutora em Engenharia Elétrica153311/2014-2CNP
    corecore