221 research outputs found

    Scheduling Jobs in Flowshops with the Introduction of Additional Machines in the Future

    Get PDF
    This is the author's peer-reviewed final manuscript, as accepted by the publisher. The published article is copyrighted by Elsevier and can be found at: http://www.journals.elsevier.com/expert-systems-with-applications/.The problem of scheduling jobs to minimize total weighted tardiness in flowshops,\ud with the possibility of evolving into hybrid flowshops in the future, is investigated in\ud this paper. As this research is guided by a real problem in industry, the flowshop\ud considered has considerable flexibility, which stimulated the development of an\ud innovative methodology for this research. Each stage of the flowshop currently has\ud one or several identical machines. However, the manufacturing company is planning\ud to introduce additional machines with different capabilities in different stages in the\ud near future. Thus, the algorithm proposed and developed for the problem is not only\ud capable of solving the current flow line configuration but also the potential new\ud configurations that may result in the future. A meta-heuristic search algorithm based\ud on Tabu search is developed to solve this NP-hard, industry-guided problem. Six\ud different initial solution finding mechanisms are proposed. A carefully planned\ud nested split-plot design is performed to test the significance of different factors and\ud their impact on the performance of the different algorithms. To the best of our\ud knowledge, this research is the first of its kind that attempts to solve an industry-guided\ud problem with the concern for future developments

    Heuristics for Unrelated Parallel Machine Scheduling with Secondary Resource Constraints

    Get PDF

    A survey of scheduling problems with setup times or costs

    Get PDF
    Author name used in this publication: C. T. NgAuthor name used in this publication: T. C. E. Cheng2007-2008 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Heuristic Algorithm to Minimize Total Weighted Tardiness on the Unrelated Parallel Machine with Sequence Dependent Setup and Future Ready Time

    Get PDF
    This study presents a heuristic algorithm to minimize total weighted tardiness on unrelated parallel machines with sequence-dependent setup time and future ready time. We propose a new rule based on Apparent Tardiness Cost (ATC). The performance of the rule is evaluated on unrelated parallel machines. In order to solve a problem, we use a look-ahead method and a job-swap method. When a machine becomes idle, the heuristic compares the jobs on the machine and selects the one with the smallest total tardiness value to carry out a process. The propose heuristic is divided into three stages: The first stage employs the newly introduced dispatching rule, ATC with continuous setup and ready time for unrelated parallel machines (ATCSR_UP), along with a look-ahead heuristic to select the initial job for each machine. The second stage, consisting of several iterations, schedules the rest of the job on the machine. Each iteration starts by finding the job with the smallest tardiness. The ATCSR_Rm rule proposed by Lin and Hsieh (2013) concerns the unrelated-parallel-machine scheduling which this study examines, so we compare our ATC-based rule with their proposed rule. Although they study a separable setup time in their research, no other paper than Lin and Hsieh (2003) focus on unrelated parallel machine with future ready times. In their WSPT term, they consider the processing time for each job; our own rule considers processing time, setup time, job ready time, and machine time. We consider the setup time, job ready time, and machine time because — according to the continuous sequence-dependent setup rule — setup time should be included in processing time (Yue and Jang 2013). In addition, job ready time and machine time should also be included in the processing time. Adding setup time 〖(s〗_(i,j)), job ready time (r_j), and machine time (t_m) to the formula thus makes the formula more accurate. Lin and Hsieh (2013) use max(r_j,t_i+s_(i,j) ) for the slack term, and they compare the ready time with the sum of the machine available time 〖(t〗_i) and the setup time 〖(s〗_(i,j)). However, in our formula, we consider ready time, machine time, and current time. Current time (t) is used when a job might come at a future time when the machine in question is idle or has finished the job. The last term of the propose heuristic is the ready term, which uses both ready time (r_j) and machine time (t_m), because it needs to specify whether ready time (r_j) or machine time (t_m) goes first. If a job is ready to be processed but the machine is not ready, the job has to wait. We use ready time (r_j) and machine time (t_m) because this makes the formula more suitable for practical, real-world us

    An exact extended formulation for the unrelated parallel machine total weighted completion time problem

    Get PDF
    The plethora of research on NP-hard parallel machine scheduling problems is focused on heuristics due to the theoretically and practically challenging nature of these problems. Only a handful of exact approaches are available in the literature, and most of these suffer from scalability issues. Moreover, the majority of the papers on the subject are restricted to the identical parallel machine scheduling environment. In this context, the main contribution of this work is to recognize and prove that a particular preemptive relaxation for the problem of minimizing the total weighted completion time (TWCT) on a set of unrelated parallel machines naturally admits a non-preemptive optimal solution and gives rise to an exact mixed integer linear programming formulation of the problem. Furthermore, we exploit the structural properties of TWCT and attain a very fast and scalable exact Benders decomposition-based algorithm for solving this formulation. Computationally, our approach holds great promise and may even be embedded into iterative algorithms for more complex shop scheduling problems as instances with up to 1000 jobs and 8 machines are solved to optimality within a few seconds
    corecore