626 research outputs found

    General self-motivation and strategy identification : Case studies based on Sokoban and Pac-Man

    Get PDF
    (c) 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.In this paper, we use empowerment, a recently introduced biologically inspired measure, to allow an AI player to assign utility values to potential future states within a previously unencountered game without requiring explicit specification of goal states. We further introduce strategic affinity, a method of grouping action sequences together to form "strategies," by examining the overlap in the sets of potential future states following each such action sequence. We also demonstrate an information-theoretic method of predicting future utility. Combining these methods, we extend empowerment to soft-horizon empowerment which enables the player to select a repertoire of action sequences that aim to maintain anticipated utility. We show how this method provides a proto-heuristic for nonterminal states prior to specifying concrete game goals, and propose it as a principled candidate model for "intuitive" strategy selection, in line with other recent work on "self-motivated agent behavior." We demonstrate that the technique, despite being generically defined independently of scenario, performs quite well in relatively disparate scenarios, such as a Sokoban-inspired box-pushing scenario and in a Pac-Man-inspired predator game, suggesting novel and principle-based candidate routes toward more general game-playing algorithms.Peer reviewedFinal Accepted Versio

    Finding maximum k-cliques faster using lazy global domination

    Get PDF
    No abstract available

    Two genetic algorithms for the bandwidth multicoloring problem

    Get PDF
    In this paper the Bandwidth Multicoloring Problem (BMCP) and the Bandwidth Coloring Problem (BCP) are considered. The problems are solved by two genetic algorithms (GAs) which use the integer encoding and standard genetic operators adapted to the problems. In both proposed implementations, all individuals are feasible by default, so search is directed into the promising regions. The first proposed method named GA1 is a constructive metaheuristic that construct solution, while the second named GA2 is an improving metaheuristic used to improve an existing solution. Genetic algorithms are tested on the publicly-available GEOM instances from the literature. Proposed GA1 has achieved a much better solution than the calculated upper bound for a given problem, and GA2 has significantly improved the solutions obtained by GA1. The obtained results are also compared with the results of the existing methods for solving BCP and BMCP
    corecore