4,399 research outputs found

    Exploring Heuristics for the Vehicle Routing Problem with Split Deliveries and Time Windows

    Get PDF
    This dissertation investigates the Vehicle Routing Problem with Split Deliveries and Time Windows. This problem assumes a depot of homogeneous vehicles and set of customers with deterministic demands requiring delivery. Split deliveries allow multiple visits to a customer and time windows restrict the time during which a delivery can be made. Several construction and local search heuristics are tested to determine their relative usefulness in generating solutions for this problem. This research shows a particular subset of the local search operators is particularly influential on solution quality and run time. Conversely, the construction heuristics tested do not significantly impact either. Several problem features are also investigated to determine their impact. Of the features explored, the ratio of customer demand to vehicle ratio revealed a significant impact on solution quality and influence on the effectiveness of the heuristics tested. Finally, this research introduces an ant colony metaheuristic coupled with a local search heuristic embedded within a dynamic program seeking to solve a Military Inventory Routing Problem with multiple-customer routes, stochastic supply, and deterministic demand. Also proposed is a suite of test problems for the Military Inventory Routing Problem

    Distribution planning in a weather-dependent scenario with stochastic travel times: a simheuristics approach

    Get PDF
    In real-life logistics, distribution plans might be affected by weather conditions (rain, snow, and fog), since they might have a significant effect on traveling times and, therefore, on total distribution costs. In this paper, the distribution problem is modeled as a multi-depot vehicle routing problem with stochastic traveling times. These traveling times are not only stochastic in nature but the specific probability distribution used to model them depends on the particular weather conditions on the delivery day. In order to solve the aforementioned problem, a simheuristic approach combining simulation within a biased-randomized heuristic framework is proposed. As the computational experiments will show, our simulation-optimization algorithm is able to provide high-quality solutions to this NP-hard problem in short computing times even for large-scale instances. From a managerial perspective, such a tool can be very useful in practical applications since it helps to increase the efficiency of the logistics and transportation operations.Peer ReviewedPostprint (published version

    Distribution planning in a weather-dependent scenario with stochastic travel times: a simheuristics approach

    Get PDF
    In real-life logistics, distribution plans might be affected by weather conditions (rain, snow, and fog), since they might have a significant effect on traveling times and, therefore, on total distribution costs. In this paper, the distribution problem is modeled as a multi-depot vehicle routing problem with stochastic traveling times. These traveling times are not only stochastic in nature but the specific probability distribution used to model them depends on the particular weather conditions on the delivery day. In order to solve the aforementioned problem, a simheuristic approach combining simulation within a biased-randomized heuristic framework is proposed. As the computational experiments will show, our simulation-optimization algorithm is able to provide high-quality solutions to this NP-hard problem in short computing times even for large-scale instances. From a managerial perspective, such a tool can be very useful in practical applications since it helps to increase the efficiency of the logistics and transportation operations.Peer ReviewedPostprint (published version

    Agent-based transportation planning compared with scheduling heuristics

    Get PDF
    Here we consider the problem of dynamically assigning vehicles to transportation orders that have di€erent time windows and should be handled in real time. We introduce a new agent-based system for the planning and scheduling of these transportation networks. Intelligent vehicle agents schedule their own routes. They interact with job agents, who strive for minimum transportation costs, using a Vickrey auction for each incoming order. We use simulation to compare the on-time delivery percentage and the vehicle utilization of an agent-based planning system to a traditional system based on OR heuristics (look-ahead rules, serial scheduling). Numerical experiments show that a properly designed multi-agent system may perform as good as or even better than traditional methods

    On two-echelon inventory systems with Poisson demand and lost sales

    Get PDF
    We derive approximations for the service levels of two-echelon inventory systems with lost sales and Poisson demand. Our method is simple and accurate for a very broad range of problem instances, including cases with both high and low service levels. In contrast, existing methods only perform well for limited problem settings, or under restrictive assumptions.\u

    Design and Control of Warehouse Order Picking: a literature review

    Get PDF
    Order picking has long been identified as the most labour-intensive and costly activity for almost every warehouse; the cost of order picking is estimated to be as much as 55% of the total warehouse operating expense. Any underperformance in order picking can lead to unsatisfactory service and high operational cost for its warehouse, and consequently for the whole supply chain. In order to operate efficiently, the orderpicking process needs to be robustly designed and optimally controlled. This paper gives a literature overview on typical decision problems in design and control of manual order-picking processes. We focus on optimal (internal) layout design, storage assignment methods, routing methods, order batching and zoning. The research in this area has grown rapidly recently. Still, combinations of the above areas have hardly been explored. Order-picking system developments in practice lead to promising new research directions.Order picking;Logistics;Warehouse Management

    Practical inventory routing: A problem definition and an optimization method

    Full text link
    The global objective of this work is to provide practical optimization methods to companies involved in inventory routing problems, taking into account this new type of data. Also, companies are sometimes not able to deal with changing plans every period and would like to adopt regular structures for serving customers

    Comparison of agent-based scheduling to look-ahead heuristics for real-time transportation problems

    Get PDF
    We consider the real-time scheduling of full truckload transportation orders with time windows that arrive during schedule execution. Because a fast scheduling method is required, look-ahead heuristics are traditionally used to solve these kinds of problems. As an alternative, we introduce an agent-based approach where intelligent vehicle agents schedule their own routes. They interact with job agents, who strive for minimum transportation costs, using a Vickrey auction for each incoming order. This approach offers several advantages: it is fast, requires relatively little information and facilitates easy schedule adjustments in reaction to information updates. We compare the agent-based approach to more traditional hierarchical heuristics in an extensive simulation experiment. We find that a properly designed multiagent approach performs as good as or even better than traditional methods. Particularly, the multi-agent approach yields less empty miles and a more stable service level

    Current Trends in Simheuristics: from smart transportation to agent-based simheuristics

    Get PDF
    Simheuristics extend metaheuristics by adding a simulation layer that allows the optimization component to deal efficiently with scenarios under uncertainty. This presentation reviews both initial as well as recent applications of simheuristics, mainly in the area of logistics and transportation. We also discuss a novel agent-based simheuristic (ABSH) approach that combines simheuristic and multi-agent systems to efficiently solve stochastic combinatorial optimization problems. The presentation is based on papers [1], [2], and [3], which have been already accepted in the prestigious Winter Simulation Conference.Peer ReviewedPostprint (published version

    E-Fulfillment and Multi-Channel Distribution ñ€“ A Review

    Get PDF
    This review addresses the specific supply chain management issues of Internet fulfillment in a multi-channel environment. It provides a systematic overview of managerial planning tasks and reviews corresponding quantitative models. In this way, we aim to enhance the understanding of multi-channel e-fulfillment and to identify gaps between relevant managerial issues and academic literature, thereby indicating directions for future research. One of the recurrent patterns in todayñ€ℱs e-commerce operations is the combination of ñ€˜bricks-and-clicksñ€ℱ, the integration of e-fulfillment into a portfolio of multiple alternative distribution channels. From a supply chain management perspective, multi-channel distribution provides opportunities for serving different customer segments, creating synergies, and exploiting economies of scale. However, in order to successfully exploit these opportunities companies need to master novel challenges. In particular, the design of a multi-channel distribution system requires a constant trade-off between process integration and separation across multiple channels. In addition, sales and operations decisions are ever more tightly intertwined as delivery and after-sales services are becoming key components of the product offering.Distribution;E-fulfillment;Literature Review;Online Retailing
    • 

    corecore