29 research outputs found

    Learning to Race through Coordinate Descent Bayesian Optimisation

    Full text link
    In the automation of many kinds of processes, the observable outcome can often be described as the combined effect of an entire sequence of actions, or controls, applied throughout its execution. In these cases, strategies to optimise control policies for individual stages of the process might not be applicable, and instead the whole policy might have to be optimised at once. On the other hand, the cost to evaluate the policy's performance might also be high, being desirable that a solution can be found with as few interactions as possible with the real system. We consider the problem of optimising control policies to allow a robot to complete a given race track within a minimum amount of time. We assume that the robot has no prior information about the track or its own dynamical model, just an initial valid driving example. Localisation is only applied to monitor the robot and to provide an indication of its position along the track's centre axis. We propose a method for finding a policy that minimises the time per lap while keeping the vehicle on the track using a Bayesian optimisation (BO) approach over a reproducing kernel Hilbert space. We apply an algorithm to search more efficiently over high-dimensional policy-parameter spaces with BO, by iterating over each dimension individually, in a sequential coordinate descent-like scheme. Experiments demonstrate the performance of the algorithm against other methods in a simulated car racing environment.Comment: Accepted as conference paper for the 2018 IEEE International Conference on Robotics and Automation (ICRA

    Context dependent fuzzy modelling and its applications

    Get PDF
    Fuzzy rule-based systems (FRBS) use the principle of fuzzy sets and fuzzy logic to describe vague and imprecise statements and provide a facility to express the behaviours of the system with a human-understandable language. Fuzzy information, once defined by a fuzzy system, is fixed regardless of the circumstances and therefore makes it very difficult to capture the effect of context on the meaning of the fuzzy terms. While efforts have been made to integrate contextual information into the representation of fuzzy sets, it remains the case that often the context model is very restrictive and/or problem specific. The work reported in this thesis is our attempt to create a practical frame work to integrate contextual information into the representation of fuzzy sets so as to improve the interpretability as well as the accuracy of the fuzzy system. Throughout this thesis, we have looked at the capability of the proposed context dependent fuzzy sets as a stand alone as well as in combination with other methods in various application scenarios ranging from time series forecasting to complicated car racing control systems. In all of the applications, the highly competitive performance nature of our approach has proven its effectiveness and efficiency compared with existing techniques in the literature

    Automating Game-design and Game-agent Balancing through Computational Intelligence

    Get PDF
    Game design has been a staple of human ingenuity and innovation for as long as games have been around. From sports, such as football, to applying game mechanics to the real world, such as reward schemes in shops, games have impacted the world in surprising ways. The process of developing games can, and should, be aided by automated systems, as machines have proven capable of finding innovative ways of complementing human intuition and inventiveness. When man and machine co-operate, better products are created and the world has only to benefit. This research seeks to find, test and assess methods of using genetic algorithms to human-led game balancing tasks. From tweaking difficulty to optimising pacing, to directing an intelligent agent’s behaviour, all these can benefit from an evolutionary approach and save a game designer many hours, if not days, of work based on trial and error. Furthermore, to improve the speed of any developed GAs, predictive models have been designed to aid the evolutionary process in finding better solutions faster. While these techniques could be applied on a wider variety of tasks, they have been tested almost exclusively on game balance problems. The major contributions are in defining the main challenges of game balance from an academic perspective, proposing solutions for better cooperation between the academic and the industrial side of games, as well as technical improvements to genetic algorithms applied to these tasks. Results have been positive, with success found in both academic publications and industrial cooperation

    Context dependent fuzzy modelling and its applications

    Get PDF
    Fuzzy rule-based systems (FRBS) use the principle of fuzzy sets and fuzzy logic to describe vague and imprecise statements and provide a facility to express the behaviours of the system with a human-understandable language. Fuzzy information, once defined by a fuzzy system, is fixed regardless of the circumstances and therefore makes it very difficult to capture the effect of context on the meaning of the fuzzy terms. While efforts have been made to integrate contextual information into the representation of fuzzy sets, it remains the case that often the context model is very restrictive and/or problem specific. The work reported in this thesis is our attempt to create a practical frame work to integrate contextual information into the representation of fuzzy sets so as to improve the interpretability as well as the accuracy of the fuzzy system. Throughout this thesis, we have looked at the capability of the proposed context dependent fuzzy sets as a stand alone as well as in combination with other methods in various application scenarios ranging from time series forecasting to complicated car racing control systems. In all of the applications, the highly competitive performance nature of our approach has proven its effectiveness and efficiency compared with existing techniques in the literature

    Crossover control in selection hyper-heuristics: case studies using MKP and HyFlex

    Get PDF
    Hyper-heuristics are a class of high-level search methodologies which operate over a search space of heuristics rather than a search space of solutions. Hyper-heuristic research has set out to develop methods which are more general than traditional search and optimisation techniques. In recent years, focus has shifted considerably towards cross-domain heuristic search. The intention is to develop methods which are able to deliver an acceptable level of performance over a variety of different problem domains, given a set of low-level heuristics to work with. This thesis presents a body of work investigating the use of selection hyper-heuristics in a number of different problem domains. Specifically the use of crossover operators, prevalent in many evolutionary algorithms, is explored within the context of single-point search hyper-heuristics. A number of traditional selection hyper-heuristics are applied to instances of a well-known NP-hard combinatorial optimisation problem, the multidimensional knapsack problem. This domain is chosen as a benchmark for the variety of existing problem instances and solution methods available. The results suggest that selection hyper-heuristics are a viable method to solve some instances of this problem domain. Following this, a framework is defined to describe the conceptual level at which crossover low-level heuristics are managed in single-point selection hyper-heuristics. HyFlex is an existing software framework which supports the design of heuristic search methods over multiple problem domains, i.e. cross-domain optimisation. A traditional heuristic selection mechanism is modified in order to improve results in the context of cross-domain optimisation. Finally the effect of crossover use in cross-domain optimisation is explored

    Crossover control in selection hyper-heuristics: case studies using MKP and HyFlex

    Get PDF
    Hyper-heuristics are a class of high-level search methodologies which operate over a search space of heuristics rather than a search space of solutions. Hyper-heuristic research has set out to develop methods which are more general than traditional search and optimisation techniques. In recent years, focus has shifted considerably towards cross-domain heuristic search. The intention is to develop methods which are able to deliver an acceptable level of performance over a variety of different problem domains, given a set of low-level heuristics to work with. This thesis presents a body of work investigating the use of selection hyper-heuristics in a number of different problem domains. Specifically the use of crossover operators, prevalent in many evolutionary algorithms, is explored within the context of single-point search hyper-heuristics. A number of traditional selection hyper-heuristics are applied to instances of a well-known NP-hard combinatorial optimisation problem, the multidimensional knapsack problem. This domain is chosen as a benchmark for the variety of existing problem instances and solution methods available. The results suggest that selection hyper-heuristics are a viable method to solve some instances of this problem domain. Following this, a framework is defined to describe the conceptual level at which crossover low-level heuristics are managed in single-point selection hyper-heuristics. HyFlex is an existing software framework which supports the design of heuristic search methods over multiple problem domains, i.e. cross-domain optimisation. A traditional heuristic selection mechanism is modified in order to improve results in the context of cross-domain optimisation. Finally the effect of crossover use in cross-domain optimisation is explored

    Bayesian Optimisation for Planning under Uncertainty

    Get PDF
    Under an increasing demand for data to understand critical processes in our world, robots have become powerful tools to automatically gather data and interact with their environments. In this context, this thesis addresses planning problems where limited prior information leads to uncertainty about the outcomes of a robot's decisions. The methods are based on Bayesian optimisation (BO), which provides a framework to solve planning problems under uncertainty by means of probabilistic modelling. As a first contribution, the thesis provides a method to find energy-efficient paths over unknown terrains. The method applies a Gaussian process (GP) model to learn online how a robot's power consumption varies as a function of its configuration while moving over the terrain. BO is applied to optimise trajectories over the GP model being learnt so that they are informative and energetically efficient. The method was tested in experiments on simulated and physical environments. A second contribution addresses the problem of policy search in high-dimensional parameter spaces. To deal with high dimensionality the method combines BO with a coordinate-descent scheme that greatly improves BO's performance when compared to conventional approaches. The method was applied to optimise a control policy for a race car in a simulated environment and shown to outperform other optimisation approaches. Finally, the thesis provides two methods to address planning problems involving uncertainty in the inputs space. The first method is applied to actively learn terrain roughness models via proprioceptive sensing with a mobile robot under localisation uncertainty. Experiments demonstrate the method's performance in both simulations and a physical environment. The second method is derived for more general optimisation problems. In particular, this method is provided with theoretical guarantees and empirical performance comparisons against other approaches in simulated environments

    Efficient resource allocation for automotive active vision systems

    Get PDF
    Individual mobility on roads has a noticeable impact upon peoples' lives, including traffic accidents resulting in severe, or even lethal injuries. Therefore the main goal when operating a vehicle is to safely participate in road-traffic while minimising the adverse effects on our environment. This goal is pursued by road safety measures ranging from safety-oriented road design to driver assistance systems. The latter require exteroceptive sensors to acquire information about the vehicle's current environment. In this thesis an efficient resource allocation for automotive vision systems is proposed. The notion of allocating resources implies the presence of processes that observe the whole environment and that are able to effeciently direct attentive processes. Directing attention constitutes a decision making process dependent upon the environment it operates in, the goal it pursues, and the sensor resources and computational resources it allocates. The sensor resources considered in this thesis are a subset of the multi-modal sensor system on a test vehicle provided by Audi AG, which is also used to evaluate our proposed resource allocation system. This thesis presents an original contribution in three respects. First, a system architecture designed to efficiently allocate both high-resolution sensor resources and computational expensive processes based upon low-resolution sensor data is proposed. Second, a novel method to estimate 3-D range motion, e cient scan-patterns for spin image based classifiers, and an evaluation of track-to-track fusion algorithms present contributions in the field of data processing methods. Third, a Pareto efficient multi-objective resource allocation method is formalised, implemented, and evaluated using road traffic test sequences

    A panorama of artificial and computational intelligence in games

    Get PDF
    This paper attempts to give a high-level overview of the field of artificial and computational intelligence (AI/CI) in games, with particular reference to how the different core research areas within this field inform and interact with each other, both actually and potentially. We identify ten main research areas within this field: NPC behavior learning, search and planning, player modeling, games as AI benchmarks, procedural content generation, computational narrative, believable agents, AI-assisted game design, general game artificial intelligence and AI in commercial games. We view and analyze the areas from three key perspectives: (1) the dominant AI method(s) used under each area; (2) the relation of each area with respect to the end (human) user; and (3) the placement of each area within a human-computer (player-game) interaction perspective. In addition, for each of these areas we consider how it could inform or interact with each of the other areas; in those cases where we find that meaningful interaction either exists or is possible, we describe the character of that interaction and provide references to published studies, if any. We believe that this paper improves understanding of the current nature of the game AI/CI research field and the interdependences between its core areas by providing a unifying overview. We also believe that the discussion of potential interactions between research areas provides a pointer to many interesting future research projects and unexplored subfields.peer-reviewe
    corecore