396 research outputs found

    Periodic-Review Policy for a 2-Echelon Inventory Problem with Seasonal Demand

    Get PDF
    This paper studies a two-level inventory system with one warehouse and n retailers under seasonal demand.  All locations apply periodic review base-stock policy with echelon stock concept.  The objective is to determine the inventory policy with minimum inventory cost respected to required service level.  Three alternatives to determine inventory policies are proposed which are upper, lower and EOQ alternatives.  Among these alternatives, it is found that, in case of positive ordering cost, upper-alternative policies give the lowest cost which is around 11% lower than other policies.  In case of zero ordering cost, EOQ-alternative policies give the lowest cost which is around 20% lower than other policies.  However, lower-alternative policies lead to the lower demand loss, its average loss is 0.07% while other policies’ loss can be as high as 0.22%

    Combining deep reinforcement learning and multi-stage stochastic programming to address the supply chain inventory management problem

    Get PDF
    We introduce a novel heuristic designed to address the supply chain inventory management problem in the context of a two-echelon divergent supply chain. The proposed heuristic advances the current state-of-the-art by combining deep reinforcement learning with multi-stage stochastic programming. In particular, deep reinforcement learning is employed to determine the number of batches to produce, while multi-stage stochastic programming is applied to make shipping decisions. To support further research, we release a publicly available software environment that simulates a wide range of two-echelon divergent supply chain settings, allowing the manipulation of various parameter values, including those associated with seasonal demands. We then present a comprehensive set of numerical experiments considering constraints on production and warehouse capacities under fixed and variable logistic costs. The results demonstrate that the proposed heuristic significantly and consistently outperforms pure deep reinforcement learning algorithms in minimizing total costs. Moreover, it overcomes several inherent limitations of multi-stage stochastic programming models, thus underscoring its potential advantages in addressing complex supply chain scenarios

    An enhanced approximation mathematical model inventorying items in a multi-echelon system under a continuous review policy with probabilistic demand and lead-time

    Get PDF
    An inventory system attempts to balance between overstock and understock to reduce the total cost and achieve customer demand in a timely manner. The inventory system is like a hidden entity in a supply chain, where a large complete network synchronizes a series of interrelated processes for a manufacturer, in order to transform raw materials into final products and distribute them to customers. The optimality of inventory and allocation policies in a supply chain for a cement industry is still unknown for many types of multi-echelon inventory systems. In multi-echelon networks, complexity exists when the inventory issues appear in multiple tiers and whose performances are significantly affected by the demand and lead-time. Hence, the objective of this research is to develop an enhanced approximation mathematical model in a multi-echelon inventory system under a continuous review policy subject to probabilistic demand and lead-time. The probability distribution function of demand during lead-time is established by developing a new Simulation Model of Demand During Lead-Time (SMDDL) using simulation procedures. The model is able to forecast future demand and demand during lead-time. The obtained demand during lead-time is used to develop a Serial Multi-echelon Inventory (SMEI) model by deriving the inventory cost function to compute performance measures of the cement inventory system. Based on the performance measures, a modified distribution multi-echelon inventory (DMEI) model with the First Come First Serve (FCFS) rule (DMEI-FCFS) is derived to determine the best expected waiting time and expected number of retailers in the system based on a mean arrival rate and a mean service rate. This research established five new distribution functions for the demand during lead-time. The distribution functions improve the performance measures, which contribute in reducing the expected waiting time in the system. Overall, the approximation model provides accurate time span to overcome shortage of cement inventory, which in turn fulfil customer satisfaction

    Inventory routing for dynamic waste collection

    Get PDF
    We consider the problem of collecting waste from sensor equipped underground containers. These sensors enable the use of a dynamic collection policy. The problem, which is known as a reverse inventory routing problem, involves decisions regarding routing and container selection. In more dense networks, the latter becomes more important. To cope with uncertainty in deposit volumes and with fluctuations due to daily and seasonal e ects, we need an anticipatory policy that balances the workload over time. We propose a relatively simple heuristic consisting of several tunable parameters depending on the day of the week. We tune the parameters of this policy using optimal learning techniques combined with simulation. We illustrate our approach using a real life problem instance of a waste collection company, located in The Netherlands, and perform experiments on several other instances. For our case study, we show that costs savings up to 40% are possible by optimizing the parameters

    Using Simulation to Assess the Opportunities of Dynamic Waste Collection

    Get PDF
    In this paper, we illustrate the use of discrete event simulation to evaluate how dynamic planning methodologies can be best applied for the collection of waste from underground containers. We present a case study that took place at the waste collection company Twente Milieu, located in The Netherlands. Even though the underground containers are already equipped with motion sensors, the planning of container emptying’s is still based on static cyclic schedules. It is expected that the use of a dynamic planning methodology, that employs sensor information, will result in a more efficient collection process with respect to customer satisfaction, profits, and CO2 emissions. In this research we use simulation to (i) evaluate the current planning methodology, (ii) evaluate various dynamic planning possibilities, (iii) quantify the benefits of switching to a dynamic collection process, and (iv) quantify the benefits of investing in fill‐level sensors. After simulating all scenarios, we conclude that major improvements can be achieved, both with respect to logistical costs as well as customer satisfaction

    E-Fulfillment and Multi-Channel Distribution – A Review

    Get PDF
    This review addresses the specific supply chain management issues of Internet fulfillment in a multi-channel environment. It provides a systematic overview of managerial planning tasks and reviews corresponding quantitative models. In this way, we aim to enhance the understanding of multi-channel e-fulfillment and to identify gaps between relevant managerial issues and academic literature, thereby indicating directions for future research. One of the recurrent patterns in today’s e-commerce operations is the combination of ‘bricks-and-clicks’, the integration of e-fulfillment into a portfolio of multiple alternative distribution channels. From a supply chain management perspective, multi-channel distribution provides opportunities for serving different customer segments, creating synergies, and exploiting economies of scale. However, in order to successfully exploit these opportunities companies need to master novel challenges. In particular, the design of a multi-channel distribution system requires a constant trade-off between process integration and separation across multiple channels. In addition, sales and operations decisions are ever more tightly intertwined as delivery and after-sales services are becoming key components of the product offering.Distribution;E-fulfillment;Literature Review;Online Retailing

    A replenishment policy for a perishable inventory system based on estimated aging and retrieval behavior

    Get PDF
    So far the literature on inventory control for perishable products has mainly focused on (near-) optimal replenishment policies for a stylized environment, assuming no leadtime, no lot-sizing, stationary demand, a first in first out retrieval policy and/or product life time equal to two periods. This literature has given fundamental insight in the behavior and the complexity of inventory systems for perishable products. In practice, many grocery retailers have recently automated the inventory replenishment for non-perishable products. They recognize they may need a different replenishment logic for perishable products, which takes into account e.g. the age of the inventory in the system. Due to new information technologies like RFID, it now also becomes more economically feasible to register this type of information. This paper suggests a replenishment policy for perishable products which takes into account the age of inventories and which requires only very simple calculations. It will be shown that in an environment, which contains important features of the real-life retail environment, this new policy leads to substantial cost reductions compared with a base policy that does not take into account the age of inventories

    Development of spreadsheet simulation models of gas cylinders inventory management

    Get PDF
    The solution of the problem of managing the inventory of an enterprise whose activities are related to the purchase and sale of gas cylinders is considered. To solve the problem, it was necessary to investigate and choose the best inventory management strategy that provides the minimum value of the average inventory balance in the warehouse with the established upper limit of the average deficit. The problem of determining the best strategy is presented as a discrete programming problem, the required variables of which depend on the replenishment method. With a periodic replenishment strategy, the controlled variables are the volume of the delivery line and the delivery interval, with a threshold one, the minimum inventory level and the volume of the delivery line. Let’s also consider replenishment with a predicted inventory level, where the delivery level and the minimum inventory level are used as control variables. Three tabular simulation models with a given delivery time and random demand are proposed. Using the Chi-square test, it was found that the quantity demanded has a normal distribution law. By carrying out computational experiments, the optimal values of controlled variables were determined. The best objective function values were obtained using a model with a predicted inventory level and a threshold replenishment strategy. Experiments conducted on the basis of historical data have shown the advantage of the two model strategies compared to the strategy currently used in the enterprise. The use of a model with a predictable inventory level would reduce the average inventory balance by 46 %, and, consequently, save working capital. The results of the study can be useful for managers of enterprises whose activities are related to inventory managemen
    corecore