2,522 research outputs found

    Integrated machine learning and optimization approaches

    Get PDF
    This dissertation focuses on the integration of machine learning and optimization. Specifically, novel machine learning-based frameworks are proposed to help solve a broad range of well-known operations research problems to reduce the solution times. The first study presents a bidirectional Long Short-Term Memory framework to learn optimal solutions to sequential decision-making problems. Computational results show that the framework significantly reduces the solution time of benchmark capacitated lot-sizing problems without much loss in feasibility and optimality. Also, models trained using shorter planning horizons can successfully predict the optimal solution of the instances with longer planning horizons. For the hardest data set, the predictions at the 25% level reduce the solution time of 70 CPU hours to less than 2 CPU minutes with an optimality gap of 0.8% and without infeasibility. In the second study, an extendable prediction-optimization framework is presented for multi-stage decision-making problems to address the key issues of sequential dependence, infeasibility, and generalization. Specifically, an attention-based encoder-decoder neural network architecture is integrated with an infeasibility-elimination and generalization framework to learn high-quality feasible solutions. The proposed framework is demonstrated to tackle the two well-known dynamic NP-Hard optimization problems: multi-item capacitated lot-sizing and multi-dimensional knapsack. The results show that models trained on shorter and smaller-dimension instances can be successfully used to predict longer and larger-dimension problems with the presented item-wise expansion algorithm. The solution time can be reduced by three orders of magnitude with an average optimality gap below 0.1%. The proposed framework can be advantageous for solving dynamic mixed-integer programming problems that need to be solved instantly and repetitively. In the third study, a deep reinforcement learning-based framework is presented for solving scenario-based two-stage stochastic programming problems, which are computationally challenging to solve. A general two-stage deep reinforcement learning framework is proposed where two learning agents sequentially learn to solve each stage of a general two-stage stochastic multi-dimensional knapsack problem. The results show that solution time can be reduced significantly with a relatively small gap. Additionally, decision-making agents can be trained with a few scenarios and solve problems with a large number of scenarios. In the fourth study, a learning-based prediction-optimization framework is proposed for solving scenario-based multi-stage stochastic programs. The issue of non-anticipativity is addressed with a novel neural network architecture that is based on a neural machine translation system. Furthermore, training the models on deterministic problems is suggested instead of solving hard and time-consuming stochastic programs. In this framework, the level of variables used for the solution is iteratively reduced to eliminate infeasibility, and a heuristic based on a linear relaxation is performed to reduce the solution time. An improved item-wise expansion strategy is introduced to generalize the algorithm to tackle instances with different sizes. The results are presented in solving stochastic multi-item capacitated lot-sizing and stochastic multi-stage multi-dimensional knapsack problems. The results show that the solution time can be reduced by a factor of 599 with an optimality gap of only 0.08%. Moreover, results demonstrate that the models can be used to predict similarly structured stochastic programming problems with a varying number of periods, items, and scenarios. The frameworks presented in this dissertation can be utilized to achieve high-quality and fast solutions to repeatedly-solved problems in various industrial and business settings, such as production and inventory management, capacity planning, scheduling, airline logistics, dynamic pricing, and emergency management

    An Expandable Machine Learning-Optimization Framework to Sequential Decision-Making

    Full text link
    We present an integrated prediction-optimization (PredOpt) framework to efficiently solve sequential decision-making problems by predicting the values of binary decision variables in an optimal solution. We address the key issues of sequential dependence, infeasibility, and generalization in machine learning (ML) to make predictions for optimal solutions to combinatorial problems. The sequential nature of the combinatorial optimization problems considered is captured with recurrent neural networks and a sliding-attention window. We integrate an attention-based encoder-decoder neural network architecture with an infeasibility-elimination and generalization framework to learn high-quality feasible solutions to time-dependent optimization problems. In this framework, the required level of predictions is optimized to eliminate the infeasibility of the ML predictions. These predictions are then fixed in mixed-integer programming (MIP) problems to solve them quickly with the aid of a commercial solver. We demonstrate our approach to tackling the two well-known dynamic NP-Hard optimization problems: multi-item capacitated lot-sizing (MCLSP) and multi-dimensional knapsack (MSMK). Our results show that models trained on shorter and smaller-dimensional instances can be successfully used to predict longer and larger-dimensional problems. The solution time can be reduced by three orders of magnitude with an average optimality gap below 0.1%. We compare PredOpt with various specially designed heuristics and show that our framework outperforms them. PredOpt can be advantageous for solving dynamic MIP problems that need to be solved instantly and repetitively

    "Rotterdam econometrics": publications of the econometric institute 1956-2005

    Get PDF
    This paper contains a list of all publications over the period 1956-2005, as reported in the Rotterdam Econometric Institute Reprint series during 1957-2005.

    A review of discrete-time optimization models for tactical production planning

    Full text link
    This is an Accepted Manuscript of an article published in International Journal of Production Research on 27 Mar 2014, available online: http://doi.org/10.1080/00207543.2014.899721[EN] This study presents a review of optimization models for tactical production planning. The objective of this research is to identify streams and future research directions in this field based on the different classification criteria proposed. The major findings indicate that: (1) the most popular production-planning area is master production scheduling with a big-bucket time-type period; (2) most of the considered limited resources correspond to productive resources and, to a lesser extent, to inventory capacities; (3) the consideration of backlogs, set-up times, parallel machines, overtime capacities and network-type multisite configuration stand out in terms of extensions; (4) the most widely used modelling approach is linear/integer/mixed integer linear programming solved with exact algorithms, such as branch-and-bound, in commercial MIP solvers; (5) CPLEX, C and its variants and Lindo/Lingo are the most popular development tools among solvers, programming languages and modelling languages, respectively; (6) most works perform numerical experiments with random created instances, while a small number of works were validated by real-world data from industrial firms, of which the most popular are sawmills, wood and furniture, automobile and semiconductors and electronic devices.This study has been funded by the Universitat Politècnica de València projects: ‘Material Requirement Planning Fourth Generation (MRPIV)’ (Ref. PAID-05-12) and ‘Quantitative Models for the Design of Socially Responsible Supply Chains under Uncertainty Conditions. Application of Solution Strategies based on Hybrid Metaheuristics’ (PAID-06-12).Díaz-Madroñero Boluda, FM.; Mula, J.; Peidro Payá, D. (2014). A review of discrete-time optimization models for tactical production planning. International Journal of Production Research. 52(17):5171-5205. doi:10.1080/00207543.2014.899721S51715205521

    Operations research models and methods for safety stock determination: A review

    Get PDF
    In supply chain inventory management it is generally accepted that safety stocks are a suitable strategy to deal with demand and supply uncertainty aiming to prevent inventory stock-outs. Safety stocks have been the subject of intensive research, typically covering the problems of dimensioning, positioning, managing and placement. Here, we narrow the scope of the discussion to the safety stock dimensioning problem, consisting in determining the proper safety stock level for each product. This paper reports the results of a recent in-depth systematic literature review (SLR) of operations research (OR) models and methods for dimensioning safety stocks. To the best of our knowledge, this is the first systematic review of the application of OR-based approaches to investigate this problem. A set of 95 papers published from 1977 to 2019 has been reviewed to identify the type of model being employed, as well as the modeling techniques and main performance criteria used. At the end, we highlight current literature gaps and discuss potential research directions and trends that may help to guide researchers and practitioners interested in the development of new OR-based approaches for safety stock determination.This work has been supported by FCT – Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020, and by the European Structural and Investment Funds in the FEDER component, through the Operational Competitiveness and Internationalization Program (COMPETE 2020) [Project no. 39479, Funding reference: POCI-01-0247-FEDER-39479]

    A hybrid algorithm to size the hospital resources in the case of a massive influx of victims

    Get PDF
    Disaster situations either natural or made-man caused a large number of deaths and injured people. Morocco has experienced several disasters recently, the last one was the railway accident on 16 October 2018, which caused 127 serious injuries and 7 deaths. This large number was a big problem for the hospital to manage the received victims in right direction, which caused lives lost and disability. In this article, in collaboration with Mohammed (V) hospital in Casablanca city in Morocco, we suggested a solution that saves lives and eliminates number of disability by using a hybrid algorithm to size the hospital resources in the case of a massive influx of victims. We also suggested a support decision tool that is called Emergency Support Decision Tool. This helpful tool gives an idea about the needed resources that support these emergencies according to the victim’s number. The proposed solution consisted in making a hybrid algorithm that mixed the theoretical simulation process and the experience feedback by developing hybrid genetic and hybrid heuristic algorithms. These algorithms using as an input the matrix solutions that generated under ARENA software and the solution generated by neural networks that based on experiences feedback. The objective was to provide a solution based on available resources. In fact, the results showed that the hybrid heuristic algorithm is more performant than the hybrid genetic algorithm

    Reinforcement learning approaches for the stochastic discrete lot-sizing problem on parallel machines

    Get PDF
    This paper addresses the stochastic discrete lot-sizing problem on parallel machines, which is a computationally challenging problem also for relatively small instances. We propose two heuristics to deal with it by leveraging reinforcement learning. In particular, we propose a technique based on approximate value iteration around post-decision state variables and one based on multi-agent reinforcement learning. We compare these two approaches with other reinforcement learning methods and more classical solution techniques, showing their effectiveness in addressing realistic size instances

    The Utilization of Soft Computing in Ordering Cycle Management

    Get PDF
    Dizertační práce se zabývá možnostmi využití pokročilých metod rozhodování Soft Computingu při řízení objednávkového cyklu podniku. Hlavním cílem dizertační práce je navržení modelu umělé neuronové sítě s optimální architekturou pro řízení objednávkového cyklu podniku v rámci řízení dodavatelského řetězce. Vytvořený model bude sloužit v organizaci působící v oblasti obchodního podnikání pro zajištění plynulého materiálového toku. Součástí dizertační práce je rovněž konstrukce a ověření modelu umělé neuronové sítě pro predikci prodeje a srovnání výsledků a vhodnosti použití s běžnými a dosud používanými statistickými metodami. Dále se dizertační práce zabývá nalezením vhodné architektury umělé neuronové sítě pro stanovení velikosti objednávky na základě zadaných vstupů. Ke zpracování modelu bylo využito metod statistického zpracování dat, ekonomického modelování, Soft Computingu a poznatků ohledně stavu vědeckého poznání řešené problematiky z posledních let.This doctoral thesis deals with possibilities of using advanced methods of decision-making - Soft Computing, in company’s ordering cycle management. The main aim of the thesis is to propose an artificial neural network model with an optimal architecture for ordering cycle management within the supply chain management. The proposed model will be employed in an organization involved in retailing to ensure smooth material flow. A design and verification of artificial neural networks model for sales prediction is also part of this doctoral thesis as well as a comparison of results and usability with standard and commonly used statistical methods. Furthermore, the thesis deals with finding a suitable artificial neural network model with architecture capable of solving the lot-size problem according to specified inputs. Methods of statistical data processing, economical modelling and advanced decision-making (Soft Computing) were utilized during the model designing process.
    corecore