850 research outputs found

    Practical Reasoning for Very Expressive Description Logics

    Full text link
    Description Logics (DLs) are a family of knowledge representation formalisms mainly characterised by constructors to build complex concepts and roles from atomic ones. Expressive role constructors are important in many applications, but can be computationally problematical. We present an algorithm that decides satisfiability of the DL ALC extended with transitive and inverse roles and functional restrictions with respect to general concept inclusion axioms and role hierarchies; early experiments indicate that this algorithm is well-suited for implementation. Additionally, we show that ALC extended with just transitive and inverse roles is still in PSPACE. We investigate the limits of decidability for this family of DLs, showing that relaxing the constraints placed on the kinds of roles used in number restrictions leads to the undecidability of all inference problems. Finally, we describe a number of optimisation techniques that are crucial in obtaining implementations of the decision procedures, which, despite the worst-case complexity of the problem, exhibit good performance with real-life problems

    Conflict Analysis in Search Algorithms for Satisfiability

    No full text
    This paper introduces GRASP (Generic search Algorithm jr the Satisfiabili{y Problem), a new search algorithm jr Propositional Satisfiabili{y (SAT). GRASP incorporates several search-pruning techniques, some of which are specific to SAT, whereas others find equivalent in other fields of Artificial Intelligence. GRASP is premised on the inevitabili{y of conflicts during search and its most distinguishingjature is the augmentation of basic backtracking search with a powerful conflict analysis procedure. Analyzing conflicts to determine their causes enables GRASP to backtrack non-chronologically to earlier levels in the search tree, potentially pruning large portions of the search space. In addition, by 'gecording" the causes of conflicts, GRASP can recognize and preempt the occurrence of similar conflicts later on in the search. Finally, straigh&rward bookkeeping of the causali {y chains leading up to conflicts allows GRASP to identij) assignments that are necessary jr a solution to be jund. Experimental results obtained jom a large number of benchmarks indicate that application of the proposed conflict analysis techniques to SAT algorithms can be extremely efctive jr a large number of representative classes of SAT instances
    • 

    corecore