41,498 research outputs found

    A Fast Quartet Tree Heuristic for Hierarchical Clustering

    Get PDF
    The Minimum Quartet Tree Cost problem is to construct an optimal weight tree from the 3(n4)3{n \choose 4} weighted quartet topologies on nn objects, where optimality means that the summed weight of the embedded quartet topologies is optimal (so it can be the case that the optimal tree embeds all quartets as nonoptimal topologies). We present a Monte Carlo heuristic, based on randomized hill climbing, for approximating the optimal weight tree, given the quartet topology weights. The method repeatedly transforms a dendrogram, with all objects involved as leaves, achieving a monotonic approximation to the exact single globally optimal tree. The problem and the solution heuristic has been extensively used for general hierarchical clustering of nontree-like (non-phylogeny) data in various domains and across domains with heterogeneous data. We also present a greatly improved heuristic, reducing the running time by a factor of order a thousand to ten thousand. All this is implemented and available, as part of the CompLearn package. We compare performance and running time of the original and improved versions with those of UPGMA, BioNJ, and NJ, as implemented in the SplitsTree package on genomic data for which the latter are optimized. Keywords: Data and knowledge visualization, Pattern matching--Clustering--Algorithms/Similarity measures, Hierarchical clustering, Global optimization, Quartet tree, Randomized hill-climbing,Comment: LaTeX, 40 pages, 11 figures; this paper has substantial overlap with arXiv:cs/0606048 in cs.D

    A New Quartet Tree Heuristic for Hierarchical Clustering

    Get PDF
    We consider the problem of constructing an an optimal-weight tree from the 3*(n choose 4) weighted quartet topologies on n objects, where optimality means that the summed weight of the embedded quartet topologiesis optimal (so it can be the case that the optimal tree embeds all quartets as non-optimal topologies). We present a heuristic for reconstructing the optimal-weight tree, and a canonical manner to derive the quartet-topology weights from a given distance matrix. The method repeatedly transforms a bifurcating tree, with all objects involved as leaves, achieving a monotonic approximation to the exact single globally optimal tree. This contrasts to other heuristic search methods from biological phylogeny, like DNAML or quartet puzzling, which, repeatedly, incrementally construct a solution from a random order of objects, and subsequently add agreement values.Comment: 22 pages, 14 figure

    A vignette model for distributed teaching and learning

    Get PDF
    Computer software and telecommunication technologies are being assimilated into the education sector. At a slower pace, educational methodologies have been evolving and gradually adopted by educators. The widespread and rapid assimilation of technology may be outstripping the uptake of better pedagogical strategies. Non‐pedagogical development of content could lead to the development of legacy systems that constrain future developments. Problems have arisen with computer‐based learning (CBL) materials, such as the lack of uptake of monolithic programmes that cannot be easily changed to keep pace with natural progress or the different requirements of different teachers and institutions. Also, hypertext/hypermedia learning environments have limitations in that following predefined paths is no more interactive than page turning. These considerations require a flexible and dynamic approach for the benefit of both the teacher and student. Courses may be constructed from vignettes to meet a desired purpose and to avoid the problems of adoption for the reasons that programmes cannot easily be changed or are not designed to meet particular needs. Vignettes are small, first‐principle, first‐person, heuristic activities (which are mimetic) from which courses can be constructed Vignettes use an object‐orientated approach to the development of computer‐based learning materials. Vignettes are objects that can be manipulated via a property sheet, which enables changing the object's inherent character or behaviour. A vignette object can interact with other vignette objects to create more complex educational interactions or models. The vignette approach leads to a development concept that is horizontally distributed across disciplines rather than vertically limited to single subjects

    Automata guided hierarchical reinforcement learning for zero-shot skill composition

    Full text link
    An obstacle that prevents the wide adoption of (deep) reinforcement learning (RL) in control systems is its need for a large amount of interactions with the environment in order to master a skill. The learned skill usually generalizes poorly across domains and re-training is often necessary when presented with a new task. We present a framework that combines methods in formal methods with hierarchical reinforcement learning (HRL). The set of techniques we provide allows for convenient specification of tasks with complex logic, learn hierarchical policies (meta-controller and low-level controllers) with well-defined intrinsic rewards using any RL methods and is able to construct new skills from existing ones without additional learning. We evaluate the proposed methods in a simple grid world simulation as well as simulation on a Baxter robot

    Extracting Hierarchies of Search Tasks & Subtasks via a Bayesian Nonparametric Approach

    Get PDF
    A significant amount of search queries originate from some real world information need or tasks. In order to improve the search experience of the end users, it is important to have accurate representations of tasks. As a result, significant amount of research has been devoted to extracting proper representations of tasks in order to enable search systems to help users complete their tasks, as well as providing the end user with better query suggestions, for better recommendations, for satisfaction prediction, and for improved personalization in terms of tasks. Most existing task extraction methodologies focus on representing tasks as flat structures. However, tasks often tend to have multiple subtasks associated with them and a more naturalistic representation of tasks would be in terms of a hierarchy, where each task can be composed of multiple (sub)tasks. To this end, we propose an efficient Bayesian nonparametric model for extracting hierarchies of such tasks \& subtasks. We evaluate our method based on real world query log data both through quantitative and crowdsourced experiments and highlight the importance of considering task/subtask hierarchies.Comment: 10 pages. Accepted at SIGIR 2017 as a full pape
    corecore