456 research outputs found

    Lazy Repairing Backtracking for Dynamic Constraint Satisfaction Problems

    Get PDF
    Extended Partial Dynamic Backtracking (EPDB) is a repair algorithm based on PDB. It deals with Dynamic CSPs based on ordering heuristics and retroactive data structures, safety conditions, and nogoods which are saved during the search process. In this paper, we show that the drawback of both EPDB and PDB is the exhaustive verification of orders, saved in safety conditions and nogoods, between variables. This verification affects remarkably search time, especially since orders are often indirectly deduced. Therefore, we propose a new approach for dynamically changing environments, the Lazy Repairing Backtracking (LRB), which is a fast version of EPDB insofar as it deduces orders directly through the used ordering heuristic. We evaluate LRB on various kinds of problems, and compare it, on the one hand, with EPDB to show its effectiveness compared to this approach, and, on the other hand, with MAC-2001 in order to conclude, from what perturbation rate resolving a DCSP with an efficient approach can be more advantageous than repair

    Empirical evaluation of Soft Arc Consistency algorithms for solving Constraint Optimization Problems

    Get PDF
    A large number of problems in Artificial Intelligence and other areas of science can be viewed as special cases of constraint satisfaction or optimization problems. Various approaches have been widely studied, including search, propagation, and heuristics. There are still challenging real-world COPs that cannot be solved using current methods. We implemented and compared several consistency propagation algorithms, which include W-AC*2001, EDAC, VAC, and xAC. Consistency propagation is a classical method to reduce the search space in CSPs, and has been adapted to COPs. We compared several consistency propagation algorithms, based on the resemblance between the optimal value ordering and the approximate value ordering generated by them. The results showed that xAC generated value orderings of higher quality than W-AC*2001 and EDAC. We evaluated some novel hybrid methods for solving COPs. Hybrid methods combine consistency propagation and search in order to reach a good solution as soon as possible and prune the search space as much as possible. We showed that the hybrid method which combines the variant TP+OnOff and branch-and-bound search performed fewer constraint checks and searched fewer nodes than others in solving random and real-world COPs
    corecore