234 research outputs found

    On the multisource hyperplanes location problem to fitting set of points

    Get PDF
    In this paper we study the problem of locating a given number of hyperplanes minimizing an objective function of the closest distances from a set of points. We propose a general framework for the problem in which norm-based distances between points and hyperplanes are aggregated by means of ordered median functions. A compact Mixed Integer Linear (or Non Linear) programming formulation is presented for the problem and also an extended set partitioning formulation with an exponential number of variables is derived. We develop a column generation procedure embedded within a branch-and-price algorithm for solving the problem by adequately performing its preprocessing, pricing and branching. We also analyze geometrically the optimal solutions of the problem, deriving properties which are exploited to generate initial solutions for the proposed algorithms. Finally, the results of an extensive computational experience are reported. The issue of scalability is also addressed showing theoretical upper bounds on the errors assumed by replacing the original datasets by aggregated versions.Comment: 30 pages, 5 Tables, 3 Figure

    A two-stage method for the capacitated multi-facility location-allocation problem

    Get PDF
    This is the author accepted manuscript. The final version is available from Inderscience via the DOI in this recordThis paper examines the capacitated planar multi-facility location-allocation problem, where the number of facilities to be located is specified and each of which has a capacity constraint. A two-stage method is put forward to deal with the problem where in the first stage a technique that discretises continuous space into discrete cells is used to generate a relatively good initial facility configurations. In stage 2, a variable neighbourhood search (VNS) is implemented to improve the quality of solution obtained by the previous stage. The performance of the proposed method is evaluated using benchmark datasets from the literature. The numerical experiments show that the proposed method yields competitive results when compared to the best known results from the literature. In addition, some future research avenues are also suggested

    A branch-and-price approach for the continuous multifacility monotone ordered median problem

    Get PDF
    Acknowledgements The authors of this research acknowledge financial support by the Spanish Ministerio de Ciencia y TecnologĂ­a, Agencia Estatal de InvestigaciĂłn and Fondos Europeos de Desarrollo Regional (FEDER) via project PID2020-114594GB-C21. The authors also acknowledge partial support from project B-FQM-322-UGR20. The first, third and fourth authors also acknowledge partial support from projects FEDER-US-1256951, Junta de Andaluca P18-FR-1422, CEI-3-FQM331, FQM-331, and NetmeetData: Ayudas Fundacin BBVA a equipos de investigacin cientĂ­fica 2019. The first and second authors were par- tially supported by research group SEJ-584 (Junta de AndalucĂ­a). The first author was also partially supported by the IMAG-Maria de Maeztu grant CEX2020-001105-M/AEI/10.13039/50110 0 011033. The second author was supported by Spanish Ministry of Education and Science grant number PEJ2018-002962-A and the Doctoral Program in Mathematics at the Universidad of Granada. The third author also acknowledges the grant ContrataciĂłn de Personal Investigador Doctor (Convocatoria 2019) 43 Contratos Capital Humano LĂ­nea 2 Paidi 2020, supported by the European Social Fund and Junta de AndalucĂ­a.In this paper, we address the Continuous Multifacility Monotone Ordered Median Problem. The goal of this problem is to locate facilities in minimizing a monotone ordered weighted median function of the distances between given demand points and its closest facility. We propose a new branch-and-price procedure for this problem, and three families of matheuristics based on: solving heuristically the pricer problem, aggregating the demand points, and discretizing the decision space. We give detailed discussions of the validity of the exact formulations and also specify the implementation details of all the solution procedures. Besides, we assess their performances in an extensive computational experience that shows the superiority of the branch-and-price approach over the compact formulation in medium-sized instances. To handle larger instances it is advisable to resort to the matheuristics that also report rather good results.Spanish Ministerio de Ciencia y TecnologĂ­a, Agencia Estatal de InvestigaciĂłn and Fondos Europeos de Desarrollo Regional (FEDER) via project PID2020-114594GB-C21Partial support from project B-FQM-322-UGR20Partial support from projects FEDER-US-1256951, Junta de Andaluca P18-FR-1422, CEI-3-FQM331, FQM-331, and NetmeetData: Ayudas FundaciĂłn BBVA a equipos de investigacin cientĂ­fica 2019Research group SEJ-584 (Junta de AndalucĂ­a)Partially supported by the IMAG-Maria de Maeztu grant CEX2020-001105-M/AEI/10.13039/50110 0 011033Spanish Ministry of Education and Science grant number PEJ2018-002962-AEuropean Social Fund and Junta de AndalucĂ­

    Sensor Deployment for Network-like Environments

    Full text link
    This paper considers the problem of optimally deploying omnidirectional sensors, with potentially limited sensing radius, in a network-like environment. This model provides a compact and effective description of complex environments as well as a proper representation of road or river networks. We present a two-step procedure based on a discrete-time gradient ascent algorithm to find a local optimum for this problem. The first step performs a coarse optimization where sensors are allowed to move in the plane, to vary their sensing radius and to make use of a reduced model of the environment called collapsed network. It is made up of a finite discrete set of points, barycenters, produced by collapsing network edges. Sensors can be also clustered to reduce the complexity of this phase. The sensors' positions found in the first step are then projected on the network and used in the second finer optimization, where sensors are constrained to move only on the network. The second step can be performed on-line, in a distributed fashion, by sensors moving in the real environment, and can make use of the full network as well as of the collapsed one. The adoption of a less constrained initial optimization has the merit of reducing the negative impact of the presence of a large number of local optima. The effectiveness of the presented procedure is illustrated by a simulated deployment problem in an airport environment

    A new local search for . . .

    Get PDF
    This paper presents a new local search approach for solving continuous location problems. The main idea is to exploit the relation between the continuous model and its discrete counterpart. A local search is first conducted in the continuous space until a local optimum is reached. It then switches to a discrete space that represents a discretisation of the continuous model to find an improved solution from there. The process continues switching between the two problem formulations until no further improvement can be found in either. Thus, we may view the procedure as a new adaption of formulatio

    An elliptical cover problem in drone delivery network design and its solution algorithms

    Get PDF
    Given n demand points in a geographic area, the elliptical cover problem is to determine the location of p depots (anywhere in the area) so as to minimize the maximum distance of an economical delivery trip in which a delivery vehicle starts from the nearest depot to a demand point, visits the demand point and then returns to the second nearest depot to that demand point. We show that this problem is NP-hard, and adapt Cooper’s alternating locate-allocate heuristic to find locally optimal solutions for both the point-coverage and area-coverage scenarios. Experiments show that most locally optimal solutions perform similarly well, suggesting their sufficiency for practical use. The one-dimensional variant of the problem, in which the service area is reduced to a line segment, permits recursive algorithms that are more efficient than mathematical optimization approaches in practical cases. The solution also provides the best-known lower bound for the original problem at a negligible computational cost

    The obnoxious facilities planar p-median problem

    Full text link
    In this paper we propose the planar obnoxious p-median problem. In the p-median problem the objective is to find p locations for facilities that minimize the weighted sum of distances between demand points and their closest facility. In the obnoxious version we add constraints that each facility must be located at least a certain distance from a partial set of demand points because they generate nuisance affecting these demand points. The resulting problem is extremely non-convex and traditional non-linear solvers such as SNOPT are not efficient. An efficient solution method based on Voronoi diagrams is proposed and tested. We also constructed the efficient frontiers of the test problems to assist the planers in making location decisions

    Solving the planar p-median problem by variable neighborhood and concentric searches

    Get PDF
    Two new approaches for the solution of the p-median problem in the plane are proposed. One is a Variable Neighborhood Search (VNS) and the other one is a concentric search. Both approaches are enhanced by a front-end procedure for finding good starting solutions and a decomposition heuristic acting as a post optimization procedure. Computational results confirm the effectiveness of the proposed algorithms
    • …
    corecore