313 research outputs found

    On the alignment of lot sizing decisions in a remanufacturing system in the presence of random yield

    Get PDF
    In the area of reverse logistics, remanufacturing has been proven to be a valu- able option for product recovery. In many industries, each step of the products’ recovery is carried out in lot sizes which leads to the assumption that for each of the different recovery steps some kind of fixed costs prevail. Furthermore, holding costs can be observed for all recovery states of the returned product. Although several authors study how the different lot sizes in a remanufacturing system shall be determined, they do not consider the specificity of the remanufacturing process itself. Thus, the disassembly operations which are always neglected in former analyses are included in this contribution as a specific recovery step. In addition, the assumption of deterministic yields (number of reworkable compo- nents obtained by disassembly) is extended in this work to study the system behavior in a stochastic environment. Three different heuristic approaches are presented for this environment that differ in their degree of sophistication. The least sophisticated method ignores yield randomness and uses the expected yield fraction as certainty equivalent. As a numerical experiment shows, this method already yields fairly good results in most of the investigated problem instances in comparison to the other heuristics which incorporate yield uncertainties. How- ever, there exist instances for which the performance loss between the least and the most sophisticated heuristic amounts to more than 6%.reverse logistics, remanufacturing, lot sizing, disassembly, random yield

    A review of discrete-time optimization models for tactical production planning

    Full text link
    This is an Accepted Manuscript of an article published in International Journal of Production Research on 27 Mar 2014, available online: http://doi.org/10.1080/00207543.2014.899721[EN] This study presents a review of optimization models for tactical production planning. The objective of this research is to identify streams and future research directions in this field based on the different classification criteria proposed. The major findings indicate that: (1) the most popular production-planning area is master production scheduling with a big-bucket time-type period; (2) most of the considered limited resources correspond to productive resources and, to a lesser extent, to inventory capacities; (3) the consideration of backlogs, set-up times, parallel machines, overtime capacities and network-type multisite configuration stand out in terms of extensions; (4) the most widely used modelling approach is linear/integer/mixed integer linear programming solved with exact algorithms, such as branch-and-bound, in commercial MIP solvers; (5) CPLEX, C and its variants and Lindo/Lingo are the most popular development tools among solvers, programming languages and modelling languages, respectively; (6) most works perform numerical experiments with random created instances, while a small number of works were validated by real-world data from industrial firms, of which the most popular are sawmills, wood and furniture, automobile and semiconductors and electronic devices.This study has been funded by the Universitat Politècnica de València projects: ‘Material Requirement Planning Fourth Generation (MRPIV)’ (Ref. PAID-05-12) and ‘Quantitative Models for the Design of Socially Responsible Supply Chains under Uncertainty Conditions. Application of Solution Strategies based on Hybrid Metaheuristics’ (PAID-06-12).Díaz-Madroñero Boluda, FM.; Mula, J.; Peidro Payá, D. (2014). A review of discrete-time optimization models for tactical production planning. International Journal of Production Research. 52(17):5171-5205. doi:10.1080/00207543.2014.899721S51715205521

    Modeling Industrial Lot Sizing Problems: A Review

    Get PDF
    In this paper we give an overview of recent developments in the field of modeling single-level dynamic lot sizing problems. The focus of this paper is on the modeling various industrial extensions and not on the solution approaches. The timeliness of such a review stems from the growing industry need to solve more realistic and comprehensive production planning problems. First, several different basic lot sizing problems are defined. Many extensions of these problems have been proposed and the research basically expands in two opposite directions. The first line of research focuses on modeling the operational aspects in more detail. The discussion is organized around five aspects: the set ups, the characteristics of the production process, the inventory, demand side and rolling horizon. The second direction is towards more tactical and strategic models in which the lot sizing problem is a core substructure, such as integrated production-distribution planning or supplier selection. Recent advances in both directions are discussed. Finally, we give some concluding remarks and point out interesting areas for future research

    On the alignment of lot sizing decisions in a remanufacturing system in the presence of random yield

    Get PDF
    In the area of reverse logistics, remanufacturing has been proven to be a valu- able option for product recovery. In many industries, each step of the products\u27 recovery is carried out in lot sizes which leads to the assumption that for each of the different recovery steps some kind of fixed costs prevail. Furthermore, holding costs can be observed for all recovery states of the returned product. Although several authors study how the different lot sizes in a remanufacturing system shall be determined, they do not consider the specificity of the remanufacturing process itself. Thus, the disassembly operations which are always neglected in former analyses are included in this contribution as a specific recovery step. In addition, the assumption of deterministic yields (number of reworkable compo- nents obtained by disassembly) is extended in this work to study the system behavior in a stochastic environment. Three different heuristic approaches are presented for this environment that differ in their degree of sophistication. The least sophisticated method ignores yield randomness and uses the expected yield fraction as certainty equivalent. As a numerical experiment shows, this method already yields fairly good results in most of the investigated problem instances in comparison to the other heuristics which incorporate yield uncertainties. How- ever, there exist instances for which the performance loss between the least and the most sophisticated heuristic amounts to more than 6%

    The boomerang returns? Accounting for the impact of uncertainties on the dynamics of remanufacturing systems

    Get PDF
    Recent years have witnessed companies abandon traditional open-loop supply chain structures in favour of closed-loop variants, in a bid to mitigate environmental impacts and exploit economic opportunities. Central to the closed-loop paradigm is remanufacturing: the restoration of used products to useful life. While this operational model has huge potential to extend product life-cycles, the collection and recovery processes diminish the effectiveness of existing control mechanisms for open-loop systems. We systematically review the literature in the field of closed-loop supply chain dynamics, which explores the time-varying interactions of material and information flows in the different elements of remanufacturing supply chains. We supplement this with further reviews of what we call the three ‘pillars’ of such systems, i.e. forecasting, collection, and inventory and production control. This provides us with an interdisciplinary lens to investigate how a ‘boomerang’ effect (i.e. sale, consumption, and return processes) impacts on the behaviour of the closed-loop system and to understand how it can be controlled. To facilitate this, we contrast closed-loop supply chain dynamics research to the well-developed research in each pillar; explore how different disciplines have accommodated the supply, process, demand, and control uncertainties; and provide insights for future research on the dynamics of remanufacturing systems

    Supply Chain and Revenue Management for Online Retailing

    Full text link
    This dissertation focuses on optimizing inventory and pricing decisions in the online retail industry. Motivated by the importance of great customer service quality in the online retail marketplace, we investigate service-level-constrained inventory control problems in both static and dynamic settings. The first essay studies multi-period production planning problems (with or without pricing options) under stochastic demand. A joint service-level constraint is enforced to restrict the joint probability of having backorders in any period. We use the Sample Average Approximation (SAA) approach to reformulate both chance-constrained models as mixed-integer linear programs (MILPs). Via computations of diverse instances, we demonstrate the effectiveness of the SAA approach, analyze the solution feasibility and objective bounds, and conduct sensitivity analysis. The approaches can be generalized to a wide variety of production planning problems. The second essay investigates the dynamic versions of the service-level-constrained inventory control problems, in which retailers have the flexibility to adjust their inventory policies in each period. We formulate two periodic-review stochastic inventory models (backlogging model and remanufacturing model) via Dynamic Programs (DP), and establish the optimality of generalized base-stock policies. We also propose 2-approximation algorithms for both models, which is computationally more efficient than the brute-force DP. The core concept developed in our algorithms is called the delayed marginal cost, which is proven effective in dealing with service-level-constrained inventory systems. The third essay is motivated by the exploding use of sales rank information in today's internet-based e-commerce marketplace. The sales rank affects consumers' shopping preference and therefore, is critical for retailers to utilize when making pricing decisions. We study periodic-review dynamic pricing problems in presence of sales rank, in which customers' demand is a function of both prices and sales rank. We propose rank-based pricing models and characterize the structure and monotonicity of optimal pricing policies. Our numerical experiments illustrate the potential of revenue increases when strategic cyclic policy is used.PHDIndustrial & Operations EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/144159/1/ycjiang_1.pd

    Periodic Review, Push Inventory Policies for Remanufacturing

    Get PDF
    Sustainability has become a major issue in most economies, causing many leading companies to focus on product recovery and reverse logistics. This research is focused on product recovery, and in particular on production control and inventory management in the remanufacturing context. We study a remanufacturing facility that receives a stream of returned products according to a Poisson process. Demand is uncertain and also follows a Poisson process. The decision problems for the remanufacturing facility are when to release returned products to the remanufacturing line and how many new products to manufacture. We assume that remanufactured products are as good as new. In this paper, we employ a "push" policy that combines these two decisions. It is well known that the optimal policy parameters are difficult to find analytically; therefore, we develop several heuristics based on traditional inventory models. We also investigate the performance of the system as a function of return rates, backorder costs and manufacturing and remanufacturing lead times; and we develop approximate lower and upper bounds on the optimal solution. We illustrate and explain some counter-intuitive results and we test the performance of the heuristics on a set of sample problems. We find that the average error of the heuristics is quite low.inventory;reverse logistics;remanufacturing;environment;heuristics

    Economic lot-sizing with remanufacturing: complexity and efficient formulations

    Get PDF
    Within the framework of reverse logistics, the classic economic lot-sizing problem has been extended with a remanufacturing option. In this extended problem, known quantities of used products are returned from customers in each period. These returned products can be remanufactured, so that they are as good as new. Customer demand can then be fulfilled both from newly produced and remanufactured items. In each period, we can choose to set up a process to remanufacture returned products or produce new items. These processes can have separate or joint set-up costs. In this paper, we show that both variants are NP-hard. Furthermore, we propose and compare several alternative MIP formulations of both problems. Because ‘natural’ lot-sizing formulations provide weak lower bounds, we propose tighter formulations, namely shortest path formulations, a partial shortest path formulation and an adaptation of the (l, S, WW)-inequalities for the classic problem with Wagner-Whitin costs. We test their efficiency on a large number of test data sets and find that, for both problem variants, a (partial) shortest path type formulation performs better than the natural formulation, in terms of both the LP relaxation and MIP computation times. Moreover, this improvement can be substantial

    Production distribution planning in a multiechelon supply chain using carbon policies: A review and reflections

    Get PDF
    Sustainability of a supply chain has gained more attention from economists, environmentalists, consumers, manufacturers, government and the academia. In this paper, the literature survey has been performed on production allocation problem in a multi-echelon supply chain with carbon policies. With web-based search engines such as Scopus and Web of Science several resources such as journals, conference proceedings and books are selected and reviewed. It is observed from the literature that the mentioned problem traces the progression of carbon policies in a supply chain over the past 22 years to provide substantiation for Green Supply Chain. The research papers are then analyzed and categorized to construct the useful foundation of previous studies. Moreover, the importance of this problem in recent years needs has been highlighted by mentioning the gaps in the literature. Further, at the end of the paper, several future work directions in this area also suggested.(undefined)info:eu-repo/semantics/publishedVersio
    corecore