191 research outputs found

    Ant-based Survivable Routing in Dynamic WDM Networks with Shared Backup Paths

    Get PDF

    Design of survivable WDM network based on pre-configured protection cycle

    Get PDF
    Wavelength Division Multiplexing (WDM) is an important technique which allows the trans- port of large quantities of data over optical networks. All optical WDM-based networks have been used to improve overall communication capacity and provide an excellent choice for the design of backbone networks. However, due to the high traffic load that each link can carry in a WDM network, survivability against failures becomes very important. Survivability in this context is the ability of the network to maintain continuity of service against failures, since a failure can lead to huge data losses. In recent years, many survivability mechanisms have been studied and their performance assessed through capacity efficiency, restoration time and restorability. Survivability mechanisms for ring and mesh topologies have received particular attention

    Protection and restoration algorithms for WDM optical networks

    Get PDF
    Currently, Wavelength Division Multiplexing (WDM) optical networks play a major role in supporting the outbreak in demand for high bandwidth networks driven by the Internet. It can be a catastrophe to millions of users if a single optical fiber is somehow cut off from the network, and there is no protection in the design of the logical topology for a restorative mechanism. Many protection and restoration algorithms are needed to prevent, reroute, and/or reconfigure the network from damages in such a situation. In the past few years, many works dealing with these issues have been reported. Those algorithms can be implemented in many ways with several different objective functions such as a minimization of protection path lengths, a minimization of restoration times, a maximization of restored bandwidths, etc. This thesis investigates, analyzes and compares the algorithms that are mainly aimed to guarantee or maximize the amount of remaining bandwidth still working over a damaged network. The parameters considered in this thesis are the routing computation and implementation mechanism, routing characteristics, recovering computation timing, network capacity assignment, and implementing layer. Performance analysis in terms of the restoration efficiency, the hop length, the percentage of bandwidth guaranteed, the network capacity utilization, and the blocking probability is conducted and evaluated

    Optimal Algorithms for Near-Hitless Network Restoration via Diversity Coding

    Full text link
    Diversity coding is a network restoration technique which offers near-hitless restoration, while other state-of-the art techniques are significantly slower. Furthermore, the extra spare capacity requirement of diversity coding is competitive with the others. Previously, we developed heuristic algorithms to employ diversity coding structures in networks with arbitrary topology. This paper presents two algorithms to solve the network design problems using diversity coding in an optimal manner. The first technique pre-provisions static traffic whereas the second technique carries out the dynamic provisioning of the traffic on-demand. In both cases, diversity coding results in smaller restoration time, simpler synchronization, and much reduced signaling complexity than the existing techniques in the literature. A Mixed Integer Programming (MIP) formulation and an algorithm based on Integer Linear Programming (ILP) are developed for pre-provisioning and dynamic provisioning, respectively. Simulation results indicate that diversity coding has significantly higher restoration speed than Shared Path Protection (SPP) and p-cycle techniques. It requires more extra capacity than the p-cycle technique and SPP. However, the increase in the total capacity is negligible compared to the increase in the restoration speed.Comment: An old version of this paper is submitted to IEEE Globecom 2012 conferenc

    Survivable mesh-network design & optimization to support multiple QoP service classes

    Get PDF
    Every second, vast amounts of data are transferred over communication systems around the world, and as a result, the demands on optical infrastructures are extending beyond the traditional, ring-based architecture. The range of content and services available from the Internet is increasing, and network operations are constantly under pressure to expand their optical networks in order to keep pace with the ever increasing demand for higher speed and more reliable links

    Survivability through pre-configured protection in optical mesh networks

    Get PDF
    Network survivability is a very important issue, especially in optical networks that carry huge amount of traffic. Network failures which may be caused by human errors, malfunctional systems and natural disaster (eg. Earthquakes and lightening storms), have occurred quite frequently and sometimes with unpredictable consequences. Survivability is defined as the ability of the network to maintain the continuity of service against failures of network components. Pre-configuration and dynamic restoration are two schemes for network survivability. For each scheme, survivability algorithms can be applied at either Optical Channel sublayer (Och) known as link-based. Or, Optical Multiplex Section sublayer (OMS) known as path-based. The efficiency of survivability algorithms can be assessed through such criteria as capacity efficiency, restoration time and quality service. Dynamic restoration is more efficient than pre-configuration in terms of capacity resource utilization, but restoration time is longer and 100% service recovery cannot be guaranteed because sufficient spare capacity may not be available at the time of failures. Similarly, path-based survivability offers a high performance scheme for utilizing capacity resource, but restoration time is longer than link based survivability

    Genetic algorithm for the topological design of survivable optical transport networks

    Get PDF
    We develop a genetic algorithm for the topological design of survivable optical transport networks with minimum capital expenditure. Using the developed genetic algorithm we can obtain near-optimal topologies in a short time. The quality of the obtained solutions is assessed using an integer linear programming model. Two initial population generators, two selection methods, two crossover operators, and two population sizes are analyzed. Computational results obtained using real telecommunications networks show that by using an initial population that resembles real optical transport networks a good convergence is achieved
    corecore