430 research outputs found

    THE NEW HEURISTIC GUESS AND DETERMINE ATTACK ON SNOW 2.0 STREAM CIPHER

    Get PDF
    SNOW 2.0 is a word oriented stream cipher that has been selected as a standard stream cipher on ISO/IEC 18033-4. One of the general attacks on the stream ciphers is Guess and Determine attack. Heuristic GD attack is GD attack that represents an algorithmic method to analysis the stream cipher with the variables of the same size. The results of HGD attack on TIPSY, SNOW 1.0 and SNOW 2.0 stream ciphers led to less complexity rather than previously known GD attacks. In this paper, the authors use of two auxiliary polynomials to improve HGD attack on SNOW 2.0. This attack reduces the complexity and the size of the guessed basis from O (2265) to O (2192) and 8 to 6, respectively, compared with previous ad-hoc and heuristic GD attacks

    Links between Division Property and Other Cube Attack Variants

    Get PDF
    A theoretically reliable key-recovery attack should evaluate not only the non-randomness for the correct key guess but also the randomness for the wrong ones as well. The former has always been the main focus but the absence of the latter can also cause self-contradicted results. In fact, the theoretic discussion of wrong key guesses is overlooked in quite some existing key-recovery attacks, especially the previous cube attack variants based on pure experiments. In this paper, we draw links between the division property and several variants of the cube attack. In addition to the zero-sum property, we further prove that the bias phenomenon, the non-randomness widely utilized in dynamic cube attacks and cube testers, can also be reflected by the division property. Based on such links, we are able to provide several results: Firstly, we give a dynamic cube key-recovery attack on full Grain-128. Compared with Dinur et al.’s original one, this attack is supported by a theoretical analysis of the bias based on a more elaborate assumption. Our attack can recover 3 key bits with a complexity 297.86 and evaluated success probability 99.83%. Thus, the overall complexity for recovering full 128 key bits is 2125. Secondly, now that the bias phenomenon can be efficiently and elaborately evaluated, we further derive new secure bounds for Grain-like primitives (namely Grain-128, Grain-128a, Grain-V1, Plantlet) against both the zero-sum and bias cube testers. Our secure bounds indicate that 256 initialization rounds are not able to guarantee Grain-128 to resist bias-based cube testers. This is an efficient tool for newly designed stream ciphers for determining the number of initialization rounds. Thirdly, we improve Wang et al.’s relaxed term enumeration technique proposed in CRYPTO 2018 and extend their results on Kreyvium and ACORN by 1 and 13 rounds (reaching 892 and 763 rounds) with complexities 2121.19 and 2125.54 respectively. To our knowledge, our results are the current best key-recovery attacks on these two primitives

    Graph-Based Approach to the Edit Distance Cryptanalysis of Irregularly Clocked Linear Feedback Shift Registers

    Get PDF
    This paper proposes a speed-up of a known-plaintext attack on some stream ciphers based on Linear Feedback Shift Registers (LFSRs). The algorithm consists of two basic steps: first, to guess the initial seed value of one of the LFSRs, and then to use the resulting binary sequence in order to deduce useful information about the cipher parameters. In particular, the proposed divide-and-conquer attack is based on a combination of graph-based techniques with edit distance concepts. While the original edit distance attack requires the exhaustive search over the set of all possible initial states of the involved LFSR, this work presents a new heuristic optimization that avoids the evaluation of an important number of initial states through the identification of the most promising branches of the search graph. The strongest aspects of the proposal are the facts that the obtained results from the attack are absolutely deterministic, and that many inconsistent initial states of the target LFSRs are recognized and avoided during search.This work was supported by the Spanish Ministry of Science and Innovation and European FEDER Fund under Project TIN2008-02236/TSI as well as by CDTI (Spain)and the companies INDRA, Unin Fenosa, Tecnobit, Visual Tool, Brainstorm, SAC and Technosafe under Project Cenit-HESPERIA.Peer reviewe

    Graph-Based Approach to the Edit Distance Cryptanalysis of Irregularly Clocked Linear Feedback Shift Registers

    Get PDF
    This paper proposes a speed-up of a known-plaintext attack on some stream ciphers based on Linear Feedback Shift Registers (LFSRs). The algorithm consists of two basic steps: first, to guess the initial seed value of one of the LFSRs, and then to use the resulting binary sequence in order to deduce useful information about the cipher parameters. In particular, the proposed divide-and-conquer attack is based on a combination of graph-based techniques with edit distance concepts. While the original edit distance attack requires the exhaustive search over the set of all possible initial states of the involved LFSR, this work presents a new heuristic optimization that avoids the evaluation of an important number of initial states through the identification of the most promising branches of the search graph. The strongest aspects of the proposal are the facts that the obtained results from the attack are absolutely deterministic, and that many inconsistent initial states of the target LFSRs are recognized and avoided during search.This work was supported by the Spanish Ministry of Science and Innovation and European FEDER Fund under Project TIN2008-02236/TSI as well as by CDTI (Spain)and the companies INDRA, Unin Fenosa, Tecnobit, Visual Tool, Brainstorm, SAC and Technosafe under Project Cenit-HESPERIA.Peer reviewe

    Using Evolving Algorithms to Cryptanalysis Nonlinear Cryptosystems

    Get PDF
                في هذا البحث، نتحرى عن استخدام الخوارزميات التطورية (EA's) لتحليل أحد أنظمة التشفير غير الخطية التي تعتمد على وحدة السجلات الزاحفة لتبادل البيانات الخطية (LFSR) باستخدام طريقة هجوم النص المشفر فقط. الخوارزمية الجينية (GA) و خوارزمية خلية النمل ((Ant Colony Optimization (ACO) التي استخدمت في مهاجمة أحد أنظمة التشفير غير الخطية المسماة "Shrinking Generator" باستخدام أطوال مختلفة من النص المشفر وأطوال مختلفة من LFSRs المدمجة أثبتت أدائها الجيد في إيجاد القيم الأولية لل LFSRs المدمجة.            In this paper, new method have been investigated using evolving algorithms (EA's) to cryptanalysis one of the nonlinear stream cipher cryptosystems which depends on the Linear Feedback Shift Register (LFSR) unit by using cipher text-only attack. Genetic Algorithm (GA) and Ant Colony Optimization (ACO) which are used for attacking one of the nonlinear cryptosystems called "shrinking generator" using different lengths of cipher text and different lengths of combined LFSRs. GA and ACO proved their good performance in finding the initial values of the combined LFSRs. This work can be considered as a warning for a stream cipher designer to avoid the weak points, which may be found in the stream cipher, and may be explored by the cryptanalysts. This work can find the optimal solution for text with minimum lengths of 20 characters and 100 iteration were very enough to find the real initial values of key stream
    corecore