235 research outputs found

    A literature overview on scheduling electric vehicles in public transport and location planning of the charging infrastructure

    Get PDF
    The Vehicle Scheduling Problem (VSP) is a well-studied combinatorial optimization problem arising for bus companies in public transport. The objective is to cover a given set of timetabled trips by a set of buses at minimum costs. The Electric Vehicle Scheduling Problem (E-VSP) complicates traditional bus scheduling by considering electric buses with limited driving ranges. To compensate these limitations, detours to charging stations become necessary for charging the vehicle batteries during operations. To save costs, the charging stations must be located within the road network in such a way that required deadhead trips are as short as possible or even redundant. For solving the traditional VSP, a variety of solution approaches exist capable of solving even real-world instances with large networks and timetables to optimality. In contrast, the problem complexity increases significantly when considering limited ranges and chargings of the batteries. For this reason, there mainly exist solution approaches for the E-VSP which are based von heuristic procedures as exact methods do not provide solutions within a reasonable time. In this paper, we present a literature review of solution approaches for scheduling electric vehicles in public transport and location planning of charging stations. Since existing work differ in addition to the solution methodology also in the mapping of electric vehicles' technical aspects, we pay particular attention to these characteristics. To conclude, we provide a perspective for potential further research

    Electromobility in Public Transport: Scheduling of Electric Vehicles and Location Planning of the Charging Infrastructure

    Get PDF
    In recent years, considerable efforts have been made to make public transport more environmentally friendly. This should primarily be achieved by reducing greenhouse gas emissions. Electromobility is considered to be a key technology as electric vehicles create a variety of benefits. However, the use of electric vehicles involves a number of challenges. Modern battery electric vehicles have only a fractional part of the ranges of combustion engine vehicles. Thus, a major challenge is charging the vehicles at specific charging stations to compensate for this disadvantage. Technological aspects of electric vehicles are also of importance and have to be considered. Planning tasks of public transport companies are affected by these challanges, especially vehicle scheduling. Vehicle scheduling is a well-studied optimization problem. The objective is to cover a given set of timetabled service trips by a set of vehicles at minimum costs. An issue strongly related to vehicle scheduling is location planning of the charging infrastructure. For an effcient use of electric vehicles, charging stations must be located at suitable locations in order to minimize operational costs. Location planning of charging stations is a long-term planning task whereas vehicle scheduling is a more short-term planning task in public transport. This thesis examines optimization methods for scheduling electric vehicles in public transport and location planning of the charging infrastructure. Electric vehicles' technological aspects are particularly considered. Case studies based on real-world data are used for evaluation of the artifacts developed. An exact optimization method addresses scheduling of mixed vehicles fleets consisting of electric vehicles and vehicles without range limitations. It is examined whether traditional solution methods for vehicle scheduling are able to cope with the challenges imposed by electric vehicles. The results show, that solution methods for vehicle scheduling are able to deal with the additional challenges to a certain degree. However, novel methods are required to fully deal with the requirements of electric vehicles. A heuristic solution method for scheduling electric vehicles and models for the charging process of batteries are developed. The impact of the detail level of electric vehicles' technological aspects on resulting solutions is analyzed. A computational study reveales major discrepancies between model assumptions and real charging behaviours. A metaheuristic solution method for the simultaneous optimization of location planning of charging stations and scheduling electric vehicles is designed to connect the optimization problems and to open up synergy effects. In comparison to a sequential planning, the simultaneous problem solving is necessary because a sequential planning generally leads to either infeasible solutions or to significant increases in costs.In den letzten Jahren wurden erhebliche Anstrengungen unternommen, um den öffentlichen Personennahverkehr (ÖPNV) umweltfreundlicher zu gestalten. Dabei sollen insbesondere Treibhausgasemissionen reduziert werden. Elektromobilität wird dabei auf Grund der zahlreichen Vorteile von Elektrofahrzeugen als Schlüsseltechnologie angesehen. Der Einsatz von Elektrofahrzeugen ist jedoch mit Herausforderungen verbunden, da diese über weitaus geringere Reichweiten im Vergleich zu Fahrzeugen mit Verbrennungsmotoren verfügen, weshalb ein Nachladen der Fahrzeugbatterien während des Betriebs notwendig ist. Zudem müssen technische Aspekte von Elektrofahrzeugen, wie beispielsweise Batteriealterungsprozesse, berücksichtigt werden. Die Fahrzeugeinsatzplanung als Teil des Planungsprozesses von Verkehrsunternehmen im ÖPNV ist besonders von diesen Herausforderungen betroffen. Diese legt den Fahrzeugeinsatz für die Bedienung der angebotenen Fahrplanfahrten bei Minimierung der Gesamtkosten fest. Die Standortplanung der Ladeinfrastruktur ist eng mit dieser Aufgabe verbunden, da für einen effizienten Einsatz der Fahrzeuge Ladestationen an geeigneten Orten errichtet werden müssen, um Betriebskosten zu minimieren. Die Planung der Ladeinfrastruktur ist ein langfristiges Planungsproblem, wohingegen die Fahrzeugeinsatzplanung eine eher kurzfristige Planungsaufgabe darstellt. Diese Dissertation befasst sich mit Optimierungsmethoden für die Fahrzeugeinsatzplanung mit Elektrofahrzeugen und mit der Standortplanung der Ladeinfrastruktur. Technische Aspekte von Elektrofahrzeugen werden dabei berücksichtigt. Die entwickelten Artefakte werden mit Hilfe von realen Datensätzen evaluiert. Durch eine exakte Optimierungsmethode für die Fahrzeugeinsatzplanung mit gemischten Fahrzeugflotten bestehend aus Fahrzeugen mit und ohne Reichweiterestriktionen wird die Anwendbarkeit von Optimierungsmethoden ohne Berücksichtigung von Reichweitebeschränkungen auf die Herausforderungen von Elektrofahrzeugen untersucht. Die Ergebnisse zeigen, dass herkömmliche Optimierungsmethoden für die neuen Herausforderungen bis zu einem gewissen Grad geeignet sind, es jedoch neuartige Lösungsmethoden erfordert, um den Anforderungen von Elektrofahrzeugen vollständig gerecht zu werden. Mit Hilfe einer heuristischen Lösungsmethode für die Fahrzeugeinsatzplanung mit Elektrofahrzeugen und Modellen für den Ladeprozess von Batterien wird untersucht, inwiefern sich der Detailgrad bei der Abbildung von Ladeprozessen auf resultierende Lösungen auswirkt. Erhebliche Unterschiede zwischen Modellannahmen und realen Gegebenheiten von Ladeprozessen werden herausgearbeitet. Durch ein metaheuristisches Lösungsverfahren für die simultane Optimierung der Standortplanung der Ladeinfrastruktur und der Fahrzeugeinsatzplanung werden beide Problemstellungen miteinander verbunden, um Synergieeffekte offenzulegen. Im Vergleich zu einer sequentiellen Planung ist ein simultanes Lösen notwendig, da ein sequentielles Lösen entweder zu unzulässigen Ergebnissen oder zu erheblichen Kostensteigerungen führt

    A hybrid algorithm for the multi-depot vehicle scheduling problem arising in public transportation

    Get PDF
    In this article, a hybrid algorithm is proposed to solve the Vehicle Scheduling Problem with Multiple Depots. The proposed methodology uses a genetic algorithm, initialized with three specialized constructive procedures. The solution generated by this first approach is then refined by means of a Set Partitioning (SP) model, whose variables (columns) correspond to the current itineraries of the final population. The SP approach possibly improves the incumbent solution which is then provided as an initial point to a well-known MDVSP model. Both the SP and MDVSP models are solved with the help of a mixed integer programming (MIP) solver. The algorithm is tested in benchmark instances consisting of 2, 3 and 5 depots, and a service load ranging from 100 to 500. The results obtained showed that the proposed algorithm was capable of finding the optimal solution in most cases when considering a time limit of 500 seconds. The methodology is also applied to solve a real-life instance that arises in the transportation system in Colombia (2 depots and 719 services), resulting in a decrease of the required fleet size and a balanced allocation of services, thus reducing deadhead trips

    Scheduling Electric Buses with Stochastic Driving Times

    Get PDF
    To try to make the world more sustainable and reduce air pollution, diesel buses are being replaced with electric buses. This leads to challenges in scheduling, as electric buses need recharging during the day. Moreover, buses encounter varying traffic conditions and passenger demands, leading to delays. Scheduling electric buses with these stochastic driving times is also called the Stochastic Vehicle Scheduling Problem. The classical approach to make a schedule more robust against these delays, is to add slack to the driving time. However, this approach doesn\u27t capture the variance of a distribution well, and it doesn\u27t account for dependencies between trips. We use discrete event simulation in order to evaluate the robustness of a schedule. Then, to create a schedule, we use a hybrid approach, where we combine integer linear programming and simulated annealing with the use of these simulations. We show that with the use of our hybrid algorithm, the punctuality of the buses increase, and they also have a more timely arrival. However, we also see a slight increase in operating cost, as we need slightly more buses compared to when we use deterministic driving times

    Optimization in liner shipping

    Get PDF

    Optimizing Fueling Decisions for Locomotives in Railroad Networks

    Get PDF
    Even though rail transportation is one of the most fuel efficient forms of surface transportation, fueling costs are one of the highest operating cost head for railroad companies. In US, unlike Europe, fueling costs are indeed, by far, the single highest operating cost. For larger companies with several thousands of miles of rail network, the fuel bills often run into several billions of dollars annually. The railroad fueling problem considered in this paper has three distinct cost components. Fueling stations charge a location dependent price for the fuel in addition to a fixed contracting fee over the entire planning horizon. In addition, the railroad company must also bear incidental and notional costs for each fuelling stop. It is imperative that the number of fueling stops between an origin and destination should be restricted to avoid unnecessary delays. This paper proposes a mixed integer linear program model that determines the optimal strategy for contracting and fuel purchase schedule decisions that minimizes overall costs under certain reasonable assumptions. This model is tested on a large, real-life problem instances. This mathematical model is further enhanced by introducing several feasible MIP cuts. This paper compares the efficiency of different MIP cuts in order to reduce the run-time. Lastly, the paper concludes with an observation that even though the problem scale was expected to diminish the model performance, it was indeed noted that run-time and memory requirements are fairly reasonable. It thus establishes that this problem must be looked beyond the prism of heuristics and other approximate algorithms for actual implementation at railroad companies

    TOOLS TO SUPPORT TRANSPORTATION EMISSIONS REDUCTION EFFORTS: A MULTIFACETED APPROACH

    Get PDF
    The transportation sector is a significant contributor to current global climatic problems, one of the most prominent problems that today's society faces. In this dissertation, three complementary problems are addressed to support emissions reduction efforts by providing tools to help reduce demand for fossil fuels. The first problem addresses alternative fuel vehicle (AFV) fleet operations considering limited infrastructure availability and vehicle characteristics that contribute to emission reduction efforts by: supporting alternative fuel use and reducing carbon-intensive freight activity. A Green Vehicle Routing Problem (G-VRP) is formulated and techniques are proposed for its solution. These techniques will aid organizations with AFV fleets in overcoming difficulties that exist as a result of limited refueling infrastructure and will allow companies considering conversion to a fleet of AFVs to understand the potential impact of their decision on daily operations and costs. The second problem is aimed at supporting SOV commute trip reduction efforts through alternative transportation options. This problem contributes to emission reduction efforts by supporting reduction of carbon-intensive travel activity. Following a descriptive analysis of commuter survey data obtained from the University of Maryland, College Park campus, ordered-response models were developed to investigate the market for vanpooling. The model results show that demand for vanpooling in the role of passenger and driver have differences and the factors affecting these demands are not necessarily the same. Factors considered include: status, willingness-to-pay, distance, residential location, commuting habits, demographics and service characteristics. The third problem focuses on providing essential input data, origin-destination (OD) demand, for analysis of various strategies, to address emission reduction by helping to improve system efficiency and reducing carbon-intensive travel activity. A two-stage subarea OD demand estimation procedure is proposed to construct and update important time-dependent OD demand input for subarea analysis in an effort to overcome the computational limits of Dynamic Traffic Assignment (DTA) methodologies. The proposed method in conjunction with path-based simulation-assignment systems can provide an evolving platform for integrating operational considerations in planning models for effective decision support for agencies that are considering strategies for transportation emissions reduction

    Optimization of electric bus scheduling considering stochastic volatilities in trip travel time and energy consumption

    Get PDF
    This paper develops a vehicle scheduling method for the electric bus (EB) route considering stochastic volatilities in trip travel time and energy consumption. First, a model for estimating the trip energy consumption is proposed based on field-collected data, and the probability distribution function of trip energy consumption considering the stochastic volatility is determined. Second, we propose the charging strategy to recharge buses during their idle times. The impacts of stochastic volatilities on the departure time, the idle time, the battery state of charge, and the energy consumption of each trip are analyzed. Third, an optimization model is built with the objectives of minimizing the expectation of delays in trip departure times, the summation of energy consumption expectations, and bus procurement costs. Finally, a real bus route is taken as an example to validate the proposed method. Results show that reasonable idle times can be generated by optimizing the scheduling plan, and it is helpful to stop the accumulation of stochastic volatilities. Collaboratively optimizing vehicle scheduling and charging plans can reduce the EB fleet and delay times while meeting the route operation needs
    corecore