72,549 research outputs found

    Comparison of Direct Multiobjective Optimization Methods for the Design of Electric Vehicles

    Get PDF
    "System design oriented methodologies" are discussed in this paper through the comparison of multiobjective optimization methods applied to heterogeneous devices in electrical engineering. Avoiding criteria function derivatives, direct optimization algorithms are used. In particular, deterministic geometric methods such as the Hooke & Jeeves heuristic approach are compared with stochastic evolutionary algorithms (Pareto genetic algorithms). Different issues relative to convergence rapidity and robustness on mixed (continuous/discrete), constrained and multiobjective problems are discussed. A typical electrical engineering heterogeneous and multidisciplinary system is considered as a case study: the motor drive of an electric vehicle. Some results emphasize the capacity of each approach to facilitate system analysis and particularly to display couplings between optimization parameters, constraints, objectives and the driving mission

    Optimization of machining processes using pattern search algorithm

    Get PDF
    Optimization of machining processes not only increases machining efficiency and economics, but also the end product quality. In recent years, among the traditional optimization methods, stochastic direct search optimization methods such as meta-heuristic algorithms are being increasingly applied for solving machining optimization problems. Their ability to deal with complex, multi-dimensional and ill-behaved optimization problems made them the preferred optimization tool by most researchers and practitioners. This paper introduces the use of pattern search (PS) algorithm, as a deterministic direct search optimization method, for solving machining optimization problems. To analyze the applicability and performance of the PS algorithm, six case studies of machining optimization problems, both single and multi-objective, were considered. The PS algorithm was employed to determine optimal combinations of machining parameters for different machining processes such as abrasive waterjet machining, turning, turn-milling, drilling, electrical discharge machining and wire electrical discharge machining. In each case study the optimization solutions obtained by the PS algorithm were compared with the optimization solutions that had been determined by past researchers using meta-heuristic algorithms. Analysis of obtained optimization results indicates that the PS algorithm is very applicable for solving machining optimization problems showing good competitive potential against stochastic direct search methods such as meta-heuristic algorithms. Specific features and merits of the PS algorithm were also discussed

    Generalizing backdoors

    Get PDF
    Abstract. A powerful intuition in the design of search methods is that one wants to proactively select variables that simplify the problem instance as much as possible when these variables are assigned values. The notion of “Backdoor ” variables follows this intuition. In this work we generalize Backdoors in such a way to allow more general classes of sub-solvers, both complete and heuristic. In order to do so, Pseudo-Backdoors and Heuristic-Backdoors are formally introduced and then applied firstly to a simple Multiple Knapsack Problem and secondly to a complex combinatorial optimization problem in the area of stochastic inventory control. Our preliminary computational experience shows the effectiveness of these approaches that are able to produce very low run times and — in the case of Heuristic-Backdoors — high quality solutions by employing very simple heuristic rules such as greedy local search strategies.

    Optimization Algorithms for Computational Systems Biology

    Get PDF
    Computational systems biology aims at integrating biology and computational methods to gain a better understating of biological phenomena. It often requires the assistance of global optimization to adequately tune its tools. This review presents three powerful methodologies for global optimization that fit the requirements of most of the computational systems biology applications, such as model tuning and biomarker identification. We include the multi-start approach for least squares methods, mostly applied for fitting experimental data. We illustrate Markov Chain Monte Carlo methods, which are stochastic techniques here applied for fitting experimental data when a model involves stochastic equations or simulations. Finally, we present Genetic Algorithms, heuristic nature-inspired methods that are applied in a broad range of optimization applications, including the ones in systems biology

    Computing an Optimal Control Policy for an Energy Storage

    Full text link
    We introduce StoDynProg, a small library created to solve Optimal Control problems arising in the management of Renewable Power Sources, in particular when coupled with an Energy Storage System. The library implements generic Stochastic Dynamic Programming (SDP) numerical methods which can solve a large class of Dynamic Optimization problems. We demonstrate the library capabilities with a prototype problem: smoothing the power of an Ocean Wave Energy Converter. First we use time series analysis to derive a stochastic Markovian model of this system since it is required by Dynamic Programming. Then, we briefly describe the "policy iteration" algorithm we have implemented and the numerical tools being used. We show how the API design of the library is generic enough to address Dynamic Optimization problems outside the field of Energy Management. Finally, we solve the power smoothing problem and compare the optimal control with a simpler heuristic control.Comment: Part of the Proceedings of the 6th European Conference on Python in Science (EuroSciPy 2013), Pierre de Buyl and Nelle Varoquaux editors, (2014
    corecore