915 research outputs found

    Practical implementation of nonlinear time series methods: The TISEAN package

    Full text link
    Nonlinear time series analysis is becoming a more and more reliable tool for the study of complicated dynamics from measurements. The concept of low-dimensional chaos has proven to be fruitful in the understanding of many complex phenomena despite the fact that very few natural systems have actually been found to be low dimensional deterministic in the sense of the theory. In order to evaluate the long term usefulness of the nonlinear time series approach as inspired by chaos theory, it will be important that the corresponding methods become more widely accessible. This paper, while not a proper review on nonlinear time series analysis, tries to make a contribution to this process by describing the actual implementation of the algorithms, and their proper usage. Most of the methods require the choice of certain parameters for each specific time series application. We will try to give guidance in this respect. The scope and selection of topics in this article, as well as the implementational choices that have been made, correspond to the contents of the software package TISEAN which is publicly available from http://www.mpipks-dresden.mpg.de/~tisean . In fact, this paper can be seen as an extended manual for the TISEAN programs. It fills the gap between the technical documentation and the existing literature, providing the necessary entry points for a more thorough study of the theoretical background.Comment: 27 pages, 21 figures, downloadable software at http://www.mpipks-dresden.mpg.de/~tisea

    Bifurcation of Nonlinear Bloch Waves from the Spectrum in the Gross-Pitaevskii Equation

    Get PDF
    We rigorously analyze the bifurcation of stationary so called nonlinear Bloch waves (NLBs) from the spectrum in the Gross-Pitaevskii (GP) equation with a periodic potential, in arbitrary space dimensions. These are solutions which can be expressed as finite sums of quasi-periodic functions, and which in a formal asymptotic expansion are obtained from solutions of the so called algebraic coupled mode equations. Here we justify this expansion by proving the existence of NLBs and estimating the error of the formal asymptotics. The analysis is illustrated by numerical bifurcation diagrams, mostly in 2D. In addition, we illustrate some relations of NLBs to other classes of solutions of the GP equation, in particular to so called out--of--gap solitons and truncated NLBs, and present some numerical experiments concerning the stability of these solutions.Comment: 32 pages, 12 figures, changes: discussion of assumptions reorganized, a new section on stability of the studied solutions, 15 new references adde

    λͺ¨λΈκΈ°λ°˜κ°•ν™”ν•™μŠ΅μ„μ΄μš©ν•œκ³΅μ •μ œμ–΄λ°μ΅œμ ν™”

    Get PDF
    ν•™μœ„λ…Όλ¬Έ(박사)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :κ³΅κ³ΌλŒ€ν•™ 화학생물곡학뢀,2020. 2. 이쒅민.순차적 μ˜μ‚¬κ²°μ • λ¬Έμ œλŠ” 곡정 μ΅œμ ν™”μ˜ 핡심 λΆ„μ•Ό 쀑 ν•˜λ‚˜μ΄λ‹€. 이 문제의 수치적 해법 쀑 κ°€μž₯ 많이 μ‚¬μš©λ˜λŠ” 것은 순방ν–₯으둜 μž‘λ™ν•˜λŠ” 직접법 (direct optimization) λ°©λ²•μ΄μ§€λ§Œ, λͺ‡κ°€μ§€ ν•œκ³„μ μ„ μ§€λ‹ˆκ³  μžˆλ‹€. μ΅œμ ν•΄λŠ” open-loop의 ν˜•νƒœλ₯Ό μ§€λ‹ˆκ³  있으며, λΆˆν™•μ •μ„±μ΄ μ‘΄μž¬ν• λ•Œ λ°©λ²•λ‘ μ˜ 수치적 λ³΅μž‘λ„κ°€ μ¦κ°€ν•œλ‹€λŠ” 것이닀. 동적 κ³„νšλ²• (dynamic programming) 은 μ΄λŸ¬ν•œ ν•œκ³„μ μ„ κ·Όμ›μ μœΌλ‘œ ν•΄κ²°ν•  수 μžˆμ§€λ§Œ, κ·Έλ™μ•ˆ 곡정 μ΅œμ ν™”μ— 적극적으둜 κ³ λ €λ˜μ§€ μ•Šμ•˜λ˜ μ΄μœ λŠ” 동적 κ³„νšλ²•μ˜ 결과둜 얻어진 νŽΈλ―ΈλΆ„ 방정식 λ¬Έμ œκ°€ μœ ν•œμ°¨μ› 벑터곡간이 μ•„λ‹Œ λ¬΄ν•œμ°¨μ›μ˜ ν•¨μˆ˜κ³΅κ°„μ—μ„œ 닀루어지기 λ•Œλ¬Έμ΄λ‹€. μ†Œμœ„ μ°¨μ›μ˜ 저주라고 λΆˆλ¦¬λŠ” 이 문제λ₯Ό ν•΄κ²°ν•˜κΈ° μœ„ν•œ ν•œκ°€μ§€ λ°©λ²•μœΌλ‘œμ„œ, μƒ˜ν”Œμ„ μ΄μš©ν•œ 근사적 해법에 μ΄ˆμ μ„ λ‘” κ°•ν™”ν•™μŠ΅ 방법둠이 μ—°κ΅¬λ˜μ–΄ μ™”λ‹€. λ³Έ ν•™μœ„λ…Όλ¬Έμ—μ„œλŠ” κ°•ν™”ν•™μŠ΅ 방법둠 쀑, 곡정 μ΅œμ ν™”μ— μ ν•©ν•œ λͺ¨λΈ 기반 κ°•ν™”ν•™μŠ΅μ— λŒ€ν•΄ μ—°κ΅¬ν•˜κ³ , 이λ₯Ό 곡정 μ΅œμ ν™”μ˜ λŒ€ν‘œμ μΈ 세가지 순차적 μ˜μ‚¬κ²°μ • 문제인 μŠ€μΌ€μ€„λ§, μƒμœ„λ‹¨κ³„ μ΅œμ ν™”, ν•˜μœ„λ‹¨κ³„ μ œμ–΄μ— μ μš©ν•˜λŠ” 것을 λͺ©ν‘œλ‘œ ν•œλ‹€. 이 λ¬Έμ œλ“€μ€ 각각 λΆ€λΆ„κ΄€μΈ‘ 마λ₯΄μ½”ν”„ κ²°μ • κ³Όμ • (partially observable Markov decision process), μ œμ–΄-μ•„ν•€ μƒνƒœκ³΅κ°„ λͺ¨λΈ (control-affine state space model), 일반적 μƒνƒœκ³΅κ°„ λͺ¨λΈ (general state space model)둜 λͺ¨λΈλ§λœλ‹€. λ˜ν•œ 각 수치적 λͺ¨λΈλ“€μ„ ν•΄κ²°ν•˜κΈ° μœ„ν•΄ point based value iteration (PBVI), globalized dual heuristic programming (GDHP), and differential dynamic programming (DDP)둜 λΆˆλ¦¬λŠ” 방법듀을 λ„μž…ν•˜μ˜€λ‹€. 이 세가지 λ¬Έμ œμ™€ λ°©λ²•λ‘ μ—μ„œ μ œμ‹œλœ νŠΉμ§•λ“€μ„ λ‹€μŒκ³Ό 같이 μš”μ•½ν•  수 μžˆλ‹€: 첫번째둜, μŠ€μΌ€μ€„λ§ λ¬Έμ œμ—μ„œ closed-loop ν”Όλ“œλ°± ν˜•νƒœμ˜ ν•΄λ₯Ό μ œμ‹œν•  수 μžˆμ—ˆλ‹€. μ΄λŠ” κΈ°μ‘΄ μ§μ ‘λ²•μ—μ„œ 얻을 수 μ—†μ—ˆλ˜ ν˜•νƒœλ‘œμ„œ, κ°•ν™”ν•™μŠ΅μ˜ 강점을 뢀각할 수 μžˆλŠ” 츑면이라 생각할 수 μžˆλ‹€. λ‘λ²ˆμ§Έλ‘œ κ³ λ €ν•œ ν•˜μœ„λ‹¨κ³„ μ œμ–΄ λ¬Έμ œμ—μ„œ, 동적 κ³„νšλ²•μ˜ λ¬΄ν•œμ°¨μ› ν•¨μˆ˜κ³΅κ°„ μ΅œμ ν™” 문제λ₯Ό ν•¨μˆ˜ 근사 방법을 톡해 μœ ν•œμ°¨μ› 벑터곡간 μ΅œμ ν™” 문제둜 μ™„ν™”ν•  수 μžˆλŠ” 방법을 λ„μž…ν•˜μ˜€λ‹€. 특히, 심측 신경망을 μ΄μš©ν•˜μ—¬ ν•¨μˆ˜ 근사λ₯Ό ν•˜μ˜€κ³ , μ΄λ•Œ λ°œμƒν•˜λŠ” μ—¬λŸ¬κ°€μ§€ μž₯점과 수렴 해석 κ²°κ³Όλ₯Ό λ³Έ ν•™μœ„λ…Όλ¬Έμ— μ‹€μ—ˆλ‹€. λ§ˆμ§€λ§‰ λ¬Έμ œλŠ” μƒμœ„ 단계 동적 μ΅œμ ν™” λ¬Έμ œμ΄λ‹€. 동적 μ΅œμ ν™” λ¬Έμ œμ—μ„œ λ°œμƒν•˜λŠ” μ œμ•½ μ‘°κ±΄ν•˜μ—μ„œ κ°•ν™”ν•™μŠ΅μ„ μˆ˜ν–‰ν•˜κΈ° μœ„ν•΄, 원-μŒλŒ€ 미뢄동적 κ³„νšλ²• (primal-dual DDP) 방법둠을 μƒˆλ‘œ μ œμ•ˆν•˜μ˜€λ‹€. μ•žμ„œ μ„€λͺ…ν•œ 세가지 λ¬Έμ œμ— 적용된 방법둠을 κ²€μ¦ν•˜κ³ , 동적 κ³„νšλ²•μ΄ 직접법에 비견될 수 μžˆλŠ” λ°©λ²•λ‘ μ΄λΌλŠ” μ£Όμž₯을 μ‹€μ¦ν•˜κΈ° μœ„ν•΄ μ—¬λŸ¬κ°€μ§€ 곡정 예제λ₯Ό μ‹€μ—ˆλ‹€.Sequential decision making problem is a crucial technology for plant-wide process optimization. While the dominant numerical method is the forward-in-time direct optimization, it is limited to the open-loop solution and has difficulty in considering the uncertainty. Dynamic programming method complements the limitations, nonetheless associated functional optimization suffers from the curse-of-dimensionality. The sample-based approach for approximating the dynamic programming, referred to as reinforcement learning (RL) can resolve the issue and investigated throughout this thesis. The method that accounts for the system model explicitly is in particular interest. The model-based RL is exploited to solve the three representative sequential decision making problems; scheduling, supervisory optimization, and regulatory control. The problems are formulated with partially observable Markov decision process, control-affine state space model, and general state space model, and associated model-based RL algorithms are point based value iteration (PBVI), globalized dual heuristic programming (GDHP), and differential dynamic programming (DDP), respectively. The contribution for each problem can be written as follows: First, for the scheduling problem, we developed the closed-loop feedback scheme which highlights the strength compared to the direct optimization method. In the second case, the regulatory control problem is tackled by the function approximation method which relaxes the functional optimization to the finite dimensional vector space optimization. Deep neural networks (DNNs) is utilized as the approximator, and the advantages as well as the convergence analysis is performed in the thesis. Finally, for the supervisory optimization problem, we developed the novel constraint RL framework that uses the primal-dual DDP method. Various illustrative examples are demonstrated to validate the developed model-based RL algorithms and to support the thesis statement on which the dynamic programming method can be considered as a complementary method for direct optimization method.1. Introduction 1 1.1 Motivation and previous work 1 1.2 Statement of contributions 9 1.3 Outline of the thesis 11 2. Background and preliminaries 13 2.1 Optimization problem formulation and the principle of optimality 13 2.1.1 Markov decision process 15 2.1.2 State space model 19 2.2 Overview of the developed RL algorithms 28 2.2.1 Point based value iteration 28 2.2.2 Globalized dual heuristic programming 29 2.2.3 Differential dynamic programming 32 3. A POMDP framework for integrated scheduling of infrastructure maintenance and inspection 35 3.1 Introduction 35 3.2 POMDP solution algorithm 38 3.2.1 General point based value iteration 38 3.2.2 GapMin algorithm 46 3.2.3 Receding horizon POMDP 49 3.3 Problem formulation for infrastructure scheduling 54 3.3.1 State 56 3.3.2 Maintenance and inspection actions 57 3.3.3 State transition function 61 3.3.4 Cost function 67 3.3.5 Observation set and observation function 68 3.3.6 State augmentation 69 3.4 Illustrative example and simulation result 69 3.4.1 Structural point for the analysis of a high dimensional belief space 72 3.4.2 Infinite horizon policy under the natural deterioration process 72 3.4.3 Receding horizon POMDP 79 3.4.4 Validation of POMDP policy via Monte Carlo simulation 83 4. A model-based deep reinforcement learning method applied to finite-horizon optimal control of nonlinear control-affine system 88 4.1 Introduction 88 4.2 Function approximation and learning with deep neural networks 91 4.2.1 GDHP with a function approximator 91 4.2.2 Stable learning of DNNs 96 4.2.3 Overall algorithm 103 4.3 Results and discussions 107 4.3.1 Example 1: Semi-batch reactor 107 4.3.2 Example 2: Diffusion-Convection-Reaction (DCR) process 120 5. Convergence analysis of the model-based deep reinforcement learning for optimal control of nonlinear control-affine system 126 5.1 Introduction 126 5.2 Convergence proof of globalized dual heuristic programming (GDHP) 128 5.3 Function approximation with deep neural networks 137 5.3.1 Function approximation and gradient descent learning 137 5.3.2 Forward and backward propagations of DNNs 139 5.4 Convergence analysis in the deep neural networks space 141 5.4.1 Lyapunov analysis of the neural network parameter errors 141 5.4.2 Lyapunov analysis of the closed-loop stability 150 5.4.3 Overall Lyapunov function 152 5.5 Simulation results and discussions 157 5.5.1 System description 158 5.5.2 Algorithmic settings 160 5.5.3 Control result 161 6. Primal-dual differential dynamic programming for constrained dynamic optimization of continuous system 170 6.1 Introduction 170 6.2 Primal-dual differential dynamic programming for constrained dynamic optimization 172 6.2.1 Augmented Lagrangian method 172 6.2.2 Primal-dual differential dynamic programming algorithm 175 6.2.3 Overall algorithm 179 6.3 Results and discussions 179 7. Concluding remarks 186 7.1 Summary of the contributions 187 7.2 Future works 189 Bibliography 192Docto

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access two-volume set constitutes the proceedings of the 27th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2021, which was held during March 27 – April 1, 2021, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021. The conference was planned to take place in Luxembourg and changed to an online format due to the COVID-19 pandemic. The total of 41 full papers presented in the proceedings was carefully reviewed and selected from 141 submissions. The volume also contains 7 tool papers; 6 Tool Demo papers, 9 SV-Comp Competition Papers. The papers are organized in topical sections as follows: Part I: Game Theory; SMT Verification; Probabilities; Timed Systems; Neural Networks; Analysis of Network Communication. Part II: Verification Techniques (not SMT); Case Studies; Proof Generation/Validation; Tool Papers; Tool Demo Papers; SV-Comp Tool Competition Papers
    • …
    corecore