12,502 research outputs found

    The difficulty of folding self-folding origami

    Full text link
    Why is it difficult to refold a previously folded sheet of paper? We show that even crease patterns with only one designed folding motion inevitably contain an exponential number of `distractor' folding branches accessible from a bifurcation at the flat state. Consequently, refolding a sheet requires finding the ground state in a glassy energy landscape with an exponential number of other attractors of higher energy, much like in models of protein folding (Levinthal's paradox) and other NP-hard satisfiability (SAT) problems. As in these problems, we find that refolding a sheet requires actuation at multiple carefully chosen creases. We show that seeding successful folding in this way can be understood in terms of sub-patterns that fold when cut out (`folding islands'). Besides providing guidelines for the placement of active hinges in origami applications, our results point to fundamental limits on the programmability of energy landscapes in sheets.Comment: 8 pages, 5 figure

    Scaling laws of resistive magnetohydrodynamic reconnection in the high-Lundquist-number, plasmoid-unstable regime

    Full text link
    The Sweet-Parker layer in a system that exceeds a critical value of the Lundquist number (SS) is unstable to the plasmoid instability. In this paper, a numerical scaling study has been done with an island coalescing system driven by a low level of random noise. In the early stage, a primary Sweet-Parker layer forms between the two coalescing islands. The primary Sweet-Parker layer breaks into multiple plasmoids and even thinner current sheets through multiple levels of cascading if the Lundquist number is greater than a critical value Sc≃4×104S_{c}\simeq4\times10^{4}. As a result of the plasmoid instability, the system realizes a fast nonlinear reconnection rate that is nearly independent of SS, and is only weakly dependent on the level of noise. The number of plasmoids in the linear regime is found to scales as S3/8S^{3/8}, as predicted by an earlier asymptotic analysis (Loureiro \emph{et al.}, Phys. Plasmas \textbf{14}, 100703 (2007)). In the nonlinear regime, the number of plasmoids follows a steeper scaling, and is proportional to SS. The thickness and length of current sheets are found to scale as S−1S^{-1}, and the local current densities of current sheets scale as S−1S^{-1}. Heuristic arguments are given in support of theses scaling relations.Comment: Submitted to Phys. Plasma

    Online, interactive user guidance for high-dimensional, constrained motion planning

    Get PDF
    We consider the problem of planning a collision-free path for a high-dimensional robot. Specifically, we suggest a planning framework where a motion-planning algorithm can obtain guidance from a user. In contrast to existing approaches that try to speed up planning by incorporating experiences or demonstrations ahead of planning, we suggest to seek user guidance only when the planner identifies that it ceases to make significant progress towards the goal. Guidance is provided in the form of an intermediate configuration q^\hat{q}, which is used to bias the planner to go through q^\hat{q}. We demonstrate our approach for the case where the planning algorithm is Multi-Heuristic A* (MHA*) and the robot is a 34-DOF humanoid. We show that our approach allows to compute highly-constrained paths with little domain knowledge. Without our approach, solving such problems requires carefully-crafting domain-dependent heuristics
    • …
    corecore