2,166 research outputs found

    Conditional Task and Motion Planning through an Effort-based Approach

    Full text link
    This paper proposes a preliminary work on a Conditional Task and Motion Planning algorithm able to find a plan that minimizes robot efforts while solving assigned tasks. Unlike most of the existing approaches that replan a path only when it becomes unfeasible (e.g., no collision-free paths exist), the proposed algorithm takes into consideration a replanning procedure whenever an effort-saving is possible. The effort is here considered as the execution time, but it is extensible to the robot energy consumption. The computed plan is both conditional and dynamically adaptable to the unexpected environmental changes. Based on the theoretical analysis of the algorithm, authors expect their proposal to be complete and scalable. In progress experiments aim to prove this investigation

    Contingent task and motion planning under uncertainty for human–robot interactions

    Get PDF
    Manipulation planning under incomplete information is a highly challenging task for mobile manipulators. Uncertainty can be resolved by robot perception modules or using human knowledge in the execution process. Human operators can also collaborate with robots for the execution of some difficult actions or as helpers in sharing the task knowledge. In this scope, a contingent-based task and motion planning is proposed taking into account robot uncertainty and human–robot interactions, resulting a tree-shaped set of geometrically feasible plans. Different sorts of geometric reasoning processes are embedded inside the planner to cope with task constraints like detecting occluding objects when a robot needs to grasp an object. The proposal has been evaluated with different challenging scenarios in simulation and a real environment.Postprint (published version

    ADAPTIVE PROBABILISTIC ROADMAP CONSTRUCTION WITH MULTI-HEURISTIC LOCAL PLANNING

    Get PDF
    The motion planning problem means the computation of a collision-free motion for a movable object among obstacles from the given initial placement to the given end placement. Efficient motion planning methods have many applications in many fields, such as robotics, computer aided design, and pharmacology. The problem is known to be PSPACE-hard. Because of the computational complexity, practical applications often use heuristic or incomplete algorithms. Probabilistic roadmap is a probabilistically complete motion planning method that has been an object of intensive study over the past years. The method is known to be susceptible to the problem of “narrow passages”: Finding a motion that passes a narrow, winding tunnel can be very expensive. This thesis presents a probabilistic roadmap method that addresses the narrow passage problem with a local planner based on heuristic search. The algorithm is suitable for planning motions for rigid bodies and articulated robots including multirobot systems with many degrees-of-freedom. Variants of the algorithm are describe
    • …
    corecore