892 research outputs found

    Semi-Supervised Named Entity Recognition:\ud Learning to Recognize 100 Entity Types with Little Supervision\ud

    Get PDF
    Named Entity Recognition (NER) aims to extract and to classify rigid designators in text such as proper names, biological species, and temporal expressions. There has been growing interest in this field of research since the early 1990s. In this thesis, we document a trend moving away from handcrafted rules, and towards machine learning approaches. Still, recent machine learning approaches have a problem with annotated data availability, which is a serious shortcoming in building and maintaining large-scale NER systems. \ud \ud In this thesis, we present an NER system built with very little supervision. Human supervision is indeed limited to listing a few examples of each named entity (NE) type. First, we introduce a proof-of-concept semi-supervised system that can recognize four NE types. Then, we expand its capacities by improving key technologies, and we apply the system to an entire hierarchy comprised of 100 NE types. \ud \ud Our work makes the following contributions: the creation of a proof-of-concept semi-supervised NER system; the demonstration of an innovative noise filtering technique for generating NE lists; the validation of a strategy for learning disambiguation rules using automatically identified, unambiguous NEs; and finally, the development of an acronym detection algorithm, thus solving a rare but very difficult problem in alias resolution. \ud \ud We believe semi-supervised learning techniques are about to break new ground in the machine learning community. In this thesis, we show that limited supervision can build complete NER systems. On standard evaluation corpora, we report performances that compare to baseline supervised systems in the task of annotating NEs in texts. \u

    Large-Scale Pattern-Based Information Extraction from the World Wide Web

    Get PDF
    Extracting information from text is the task of obtaining structured, machine-processable facts from information that is mentioned in an unstructured manner. It thus allows systems to automatically aggregate information for further analysis, efficient retrieval, automatic validation, or appropriate visualization. This work explores the potential of using textual patterns for Information Extraction from the World Wide Web

    Doctor of Philosophy

    Get PDF
    dissertationManual annotation of clinical texts is often used as a method of generating reference standards that provide data for training and evaluation of Natural Language Processing (NLP) systems. Manually annotating clinical texts is time consuming, expensive, and requires considerable cognitive effort on the part of human reviewers. Furthermore, reference standards must be generated in ways that produce consistent and reliable data but must also be valid in order to adequately evaluate the performance of those systems. The amount of labeled data necessary varies depending on the level of analysis, the complexity of the clinical use case, and the methods that will be used to develop automated machine systems for information extraction and classification. Evaluating methods that potentially reduce cost, manual human workload, introduce task efficiencies, and reduce the amount of labeled data necessary to train NLP tools for specific clinical use cases are active areas of research inquiry in the clinical NLP domain. This dissertation integrates a mixed methods approach using methodologies from cognitive science and artificial intelligence with manual annotation of clinical texts. Aim 1 of this dissertation identifies factors that affect manual annotation of clinical texts. These factors are further explored by evaluating approaches that may introduce efficiencies into manual review tasks applied to two different NLP development areas - semantic annotation of clinical concepts and identification of information representing Protected Health Information (PHI) as defined by HIPAA. Both experiments integrate iv different priming mechanisms using noninteractive and machine-assisted methods. The main hypothesis for this research is that integrating pre-annotation or other machineassisted methods within manual annotation workflows will improve efficiency of manual annotation tasks without diminishing the quality of generated reference standards

    Reducing the labeling effort for entity resolution using distant supervision and active learning

    Full text link
    Entity resolution is the task of identifying records in one or more data sources which refer to the same real-world object. It is often treated as a supervised binary classification task in which a labeled set of matching and non-matching record pairs is used for training a machine learning model. Acquiring labeled data for training machine learning models is expensive and time-consuming, as it typically involves one or more human annotators who need to manually inspect and label the data. It is thus considered a major limitation of supervised entity resolution methods. In this thesis, we research two approaches, relying on distant supervision and active learning, for reducing the labeling effort involved in constructing training sets for entity resolution tasks with different profiling characteristics. Our first approach investigates the utility of semantic annotations found in HTML pages as a source of distant supervision. We profile the adoption growth of semantic annotations over multiple years and focus on product-related schema.org annotations. We develop a pipeline for cleansing and grouping semantically annotated offers describing the same products, thus creating the WDC Product Corpus, the largest publicly available training set for entity resolution. The high predictive performance of entity resolution models trained on offer pairs from the WDC Product Corpus clearly demonstrates the usefulness of semantic annotations as distant supervision for product-related entity resolution tasks. Our second approach focuses on active learning techniques, which have been widely used for reducing the labeling effort for entity resolution in related work. Yet, we identify two research gaps: the inefficient initialization of active learning and the lack of active learning methods tailored to multi-source entity resolution. We address the first research gap by developing an unsupervised method for initializing and further assisting the complete active learning workflow. Compared to active learning baselines that use random sampling or transfer learning for initialization, our method guarantees high anytime performance within a limited labeling budget for tasks with different profiling characteristics. We address the second research gap by developing ALMSER, the first active learning method which uses signals inherent to multi-source entity resolution tasks for query selection and model training. Our evaluation results indicate that exploiting such signals for query selection alone has a varying effect on model performance across different multi-source entity resolution tasks. We further investigate this finding by analyzing the impact of the profiling characteristics of multi-source entity resolution tasks on the performance of active learning methods which use different signals for query selection

    Large-Scale Pattern-Based Information Extraction from the World Wide Web

    Get PDF
    Extracting information from text is the task of obtaining structured, machine-processable facts from information that is mentioned in an unstructured manner. It thus allows systems to automatically aggregate information for further analysis, efficient retrieval, automatic validation, or appropriate visualization. This thesis explores the potential of using textual patterns for Information Extraction from the World Wide Web

    Large-Scale Pattern-Based Information Extraction from the World Wide Web

    Get PDF
    Extracting information from text is the task of obtaining structured, machine-processable facts from information that is mentioned in an unstructured manner. It thus allows systems to automatically aggregate information for further analysis, efficient retrieval, automatic validation, or appropriate visualization. This work explores the potential of using textual patterns for Information Extraction from the World Wide Web

    Theory and Applications for Advanced Text Mining

    Get PDF
    Due to the growth of computer technologies and web technologies, we can easily collect and store large amounts of text data. We can believe that the data include useful knowledge. Text mining techniques have been studied aggressively in order to extract the knowledge from the data since late 1990s. Even if many important techniques have been developed, the text mining research field continues to expand for the needs arising from various application fields. This book is composed of 9 chapters introducing advanced text mining techniques. They are various techniques from relation extraction to under or less resourced language. I believe that this book will give new knowledge in the text mining field and help many readers open their new research fields

    Web knowledge bases

    Get PDF
    Knowledge is key to natural language understanding. References to specific people, places and things in text are crucial to resolving ambiguity and extracting meaning. Knowledge Bases (KBs) codify this information for automated systems — enabling applications such as entity-based search and question answering. This thesis explores the idea that sites on the web may act as a KB, even if that is not their primary intent. Dedicated kbs like Wikipedia are a rich source of entity information, but are built and maintained at an ongoing cost in human effort. As a result, they are generally limited in terms of the breadth and depth of knowledge they index about entities. Web knowledge bases offer a distributed solution to the problem of aggregating entity knowledge. Social networks aggregate content about people, news sites describe events with tags for organizations and locations, and a diverse assortment of web directories aggregate statistics and summaries for long-tail entities notable within niche movie, musical and sporting domains. We aim to develop the potential of these resources for both web-centric entity Information Extraction (IE) and structured KB population. We first investigate the problem of Named Entity Linking (NEL), where systems must resolve ambiguous mentions of entities in text to their corresponding node in a structured KB. We demonstrate that entity disambiguation models derived from inbound web links to Wikipedia are able to complement and in some cases completely replace the role of resources typically derived from the KB. Building on this work, we observe that any page on the web which reliably disambiguates inbound web links may act as an aggregation point for entity knowledge. To uncover these resources, we formalize the task of Web Knowledge Base Discovery (KBD) and develop a system to automatically infer the existence of KB-like endpoints on the web. While extending our framework to multiple KBs increases the breadth of available entity knowledge, we must still consolidate references to the same entity across different web KBs. We investigate this task of Cross-KB Coreference Resolution (KB-Coref) and develop models for efficiently clustering coreferent endpoints across web-scale document collections. Finally, assessing the gap between unstructured web knowledge resources and those of a typical KB, we develop a neural machine translation approach which transforms entity knowledge between unstructured textual mentions and traditional KB structures. The web has great potential as a source of entity knowledge. In this thesis we aim to first discover, distill and finally transform this knowledge into forms which will ultimately be useful in downstream language understanding tasks
    • …
    corecore