1,850 research outputs found

    Industrial and Tramp Ship Routing Problems: Closing the Gap for Real-Scale Instances

    Full text link
    Recent studies in maritime logistics have introduced a general ship routing problem and a benchmark suite based on real shipping segments, considering pickups and deliveries, cargo selection, ship-dependent starting locations, travel times and costs, time windows, and incompatibility constraints, among other features. Together, these characteristics pose considerable challenges for exact and heuristic methods, and some cases with as few as 18 cargoes remain unsolved. To face this challenge, we propose an exact branch-and-price (B&P) algorithm and a hybrid metaheuristic. Our exact method generates elementary routes, but exploits decremental state-space relaxation to speed up column generation, heuristic strong branching, as well as advanced preprocessing and route enumeration techniques. Our metaheuristic is a sophisticated extension of the unified hybrid genetic search. It exploits a set-partitioning phase and uses problem-tailored variation operators to efficiently handle all the problem characteristics. As shown in our experimental analyses, the B&P optimally solves 239/240 existing instances within one hour. Scalability experiments on even larger problems demonstrate that it can optimally solve problems with around 60 ships and 200 cargoes (i.e., 400 pickup and delivery services) and find optimality gaps below 1.04% on the largest cases with up to 260 cargoes. The hybrid metaheuristic outperforms all previous heuristics and produces near-optimal solutions within minutes. These results are noteworthy, since these instances are comparable in size with the largest problems routinely solved by shipping companies

    Una comparación de algoritmos basados en trayectoria granular para el problema de localización y ruteo con flota heterogénea (LRPH)

    Get PDF
    Indexación: Scopus.We consider the Location-Routing Problem with Heterogeneous Fleet (LRPH) in which the goal is to determine the depots to be opened, the customers to be assigned to each open depot, and the corresponding routes fulfilling the demand of the customers and by considering a heterogeneous fleet. We propose a comparison of granular approaches of Simulated Annealing (GSA), of Variable Neighborhood Search (GVNS) and of a probabilistic Tabu Search (pGTS) for the LRPH. Thus, the proposed approaches consider a subset of the search space in which non-favorable movements are discarded regarding a granularity factor. The proposed algorithms are experimentally compared for the solution of the LRPH, by taking into account the CPU time and the quality of the solutions obtained on the instances adapted from the literature. The computational results show that algorithm GSA is able to obtain high quality solutions within short CPU times, improving the results obtained by the other proposed approaches.https://revistas.unal.edu.co/index.php/dyna/article/view/55533/5896

    Modeling Heterogeneous Vehicle Routing Problem with Strict Time Schedule

    Get PDF
    Vehicle Routing Problem with time windows (VRPTW) is a well known combinatorial optimization problem normally to be used for obtaining the optimal set of routes used by a fleet of vehicles in logistic system. In VRPTW it is assumed that the fleet of vehicles are all homogeny. In this paper we consider a variant of the VRPTW in which the assumption of homogeny is dropped. Now the problem is called Heterogeneous VRP (HVRP). As the logistic company has so many customers, it puts a very strict restriction in time delivery for each vehicle used. Regarding to the structure of the problem we use integer programming approach to model the problem. A feasible neighbourhood method is developed to solve the model

    Thirty years of heterogeneous vehicle routing

    No full text
    It has been around thirty years since the heterogeneous vehicle routing problem was introduced, and significant progress has since been made on this problem and its variants. The aim of this survey paper is to classify and review the literature on heterogeneous vehicle routing problems. The paper also presents a comparative analysis of the metaheuristic algorithms that have been proposed for these problems

    A simheuristic for routing electric vehicles with limited driving ranges and stochastic travel times

    Get PDF
    Green transportation is becoming relevant in the context of smart cities, where the use of electric vehicles represents a promising strategy to support sustainability policies. However the use of electric vehicles shows some drawbacks as well, such as their limited driving-range capacity. This paper analyses a realistic vehicle routing problem in which both driving-range constraints and stochastic travel times are considered. Thus, the main goal is to minimize the expected time-based cost required to complete the freight distribution plan. In order to design reliable Routing plans, a simheuristic algorithm is proposed. It combines Monte Carlo simulation with a multi-start metaheuristic, which also employs biased-randomization techniques. By including simulation, simheuristics extend the capabilities of metaheuristics to deal with stochastic problems. A series of computational experiments are performed to test our solving approach as well as to analyse the effect of uncertainty on the routing plans.Peer Reviewe
    • …
    corecore