93,831 research outputs found

    Learning Generalized Reactive Policies using Deep Neural Networks

    Full text link
    We present a new approach to learning for planning, where knowledge acquired while solving a given set of planning problems is used to plan faster in related, but new problem instances. We show that a deep neural network can be used to learn and represent a \emph{generalized reactive policy} (GRP) that maps a problem instance and a state to an action, and that the learned GRPs efficiently solve large classes of challenging problem instances. In contrast to prior efforts in this direction, our approach significantly reduces the dependence of learning on handcrafted domain knowledge or feature selection. Instead, the GRP is trained from scratch using a set of successful execution traces. We show that our approach can also be used to automatically learn a heuristic function that can be used in directed search algorithms. We evaluate our approach using an extensive suite of experiments on two challenging planning problem domains and show that our approach facilitates learning complex decision making policies and powerful heuristic functions with minimal human input. Videos of our results are available at goo.gl/Hpy4e3

    An improved bees algorithm local search mechanism for numerical dataset

    Get PDF
    Bees Algorithm (BA), a heuristic optimization procedure, represents one of the fundamental search techniques is based on the food foraging activities of bees. This algorithm performs a kind of exploitative neighbourhoods search combined with random explorative search. However, the main issue of BA is that it requires long computational time as well as numerous computational processes to obtain a good solution, especially in more complicated issues. This approach does not guarantee any optimum solutions for the problem mainly because of lack of accuracy. To solve this issue, the local search in the BA is investigated by Simple swap, 2-Opt and 3-Opt were proposed as Massudi methods for Bees Algorithm Feature Selection (BAFS). In this study, the proposed extension methods is 4-Opt as search neighbourhood is presented. This proposal was implemented and comprehensively compares and analyse their performances with respect to accuracy and time. Furthermore, in this study the feature selection algorithm is implemented and tested using most popular dataset from Machine Learning Repository (UCI). The obtained results from experimental work confirmed that the proposed extension of the search neighbourhood including 4-Opt approach has provided better accuracy with suitable time than the Massudi methods

    Supplier Choice: Market Selection under Uncertainty.

    Full text link
    Suppliers and Manufacturers generally have some say in which subset of all possible demand they will meet. In some cases that choice is implicit through pricing decisions and feature selection. Other times it is made explicitly by choosing only specific regions to stock a product in. This thesis includes models using both approaches and incorporates random demands. We present several methods for choosing a subset of all candidate customers given uncertain demands. In this thesis we consider four models of demand selection. The first two research problems consider market selection, which has been studied in the literature. The Selective Newsvendor Problem (SNP) looks at a decision maker choosing a subset of candidate markets to serve, and then receiving revenues and paying newsvendor-type costs based on the selected collection. In this thesis we consider a generalization with normally distributed demands which includes a multi-period problem as a special case and develop both exact and heuristic algorithms to solve it. When demands are not normally distributed, the problem is considerably more complex and is in general NP-hard. We develop an approximation algorithm using sample average approximation and a rounding approach to efficiently solve the problem. In addition to the work on market selection, we propose two other models for demand selection. We study auctions as a tool for a supplier with a fixed capacity to allocate the limited supply to retailers with newsvendor-type costs. Finally, we present a model for a supplier who must ensure demand is met in all markets, but has the option to work with subsidiary suppliers to meet that demand.PhDIndustrial and Operations EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120864/1/zstrinka_1.pd

    Validating Network Value of Influencers by means of Explanations

    Full text link
    Recently, there has been significant interest in social influence analysis. One of the central problems in this area is the problem of identifying influencers, such that by convincing these users to perform a certain action (like buying a new product), a large number of other users get influenced to follow the action. The client of such an application is a marketer who would target these influencers for marketing a given new product, say by providing free samples or discounts. It is natural that before committing resources for targeting an influencer the marketer would be interested in validating the influence (or network value) of influencers returned. This requires digging deeper into such analytical questions as: who are their followers, on what actions (or products) they are influential, etc. However, the current approaches to identifying influencers largely work as a black box in this respect. The goal of this paper is to open up the black box, address these questions and provide informative and crisp explanations for validating the network value of influencers. We formulate the problem of providing explanations (called PROXI) as a discrete optimization problem of feature selection. We show that PROXI is not only NP-hard to solve exactly, it is NP-hard to approximate within any reasonable factor. Nevertheless, we show interesting properties of the objective function and develop an intuitive greedy heuristic. We perform detailed experimental analysis on two real world datasets - Twitter and Flixster, and show that our approach is useful in generating concise and insightful explanations of the influence distribution of users and that our greedy algorithm is effective and efficient with respect to several baselines

    Mixed Integer Linear Programming for Feature Selection in Support Vector Machine

    Get PDF
    This work focuses on support vector machine (SVM) with feature selection. A MILP formulation is proposed for the problem. The choice of suitable features to construct the separating hyperplanes has been modelled in this formulation by including a budget constraint that sets in advance a limit on the number of features to be used in the classification process. We propose both an exact and a heuristic procedure to solve this formulation in an efficient way. Finally, the validation of the model is done by checking it with some well-known data sets and comparing it with classical classification methods.Comment: 37 pages, 20 figure
    • …
    corecore