1,883 research outputs found

    Heterogeneous Ant Colony Optimisation Methods and their Application to the Travelling Salesman and PCB Drilling Problems

    Get PDF
    Ant Colony Optimization (ACO) is an optimization algorithm that is inspired by the foraging behaviour of real ants in locating and transporting food source to their nest. It is designed as a population-based metaheuristic and have been successfully implemented on various NP-hard problems such as the well-known Traveling Salesman Problem (TSP), Vehicle Routing Problem (VRP) and many more. However, majority of the studies in ACO focused on homogeneous artificial ants although animal behaviour researchers suggest that real ants exhibit heterogeneous behaviour thus improving the overall efficiency of the ant colonies. Equally important is that most, if not all, optimization algorithms require proper parameter tuning to achieve optimal performance. However, it is well-known that parameters are problem-dependant as different problems or even different instances have different optimal parameter settings. Parameter tuning through the testing of parameter combinations is a computationally expensive procedure that is infeasible on large-scale real-world problems. One method to mitigate this is to introduce heterogeneity by initializing the artificial agents with individual parameters rather than colony level parameters. This allows the algorithm to either actively or passively discover good parameter settings during the search. The approach undertaken in this study is to randomly initialize the ants from both uniform and Gaussian distribution respectively within a predefined range of values. The approach taken in this study is one of biological plausibility for ants with similar roles, but differing behavioural traits, which are being drawn from a mathematical distribution. This study also introduces an adaptive approach to the heterogeneous ant colony population that evolves the alpha and beta controlling parameters for ACO to locate near-optimal solutions. The adaptive approach is able to modify the exploitation and exploration characteristics of the algorithm during the search to reflect the dynamic nature of search. An empirical analysis of the proposed algorithm tested on a range of Travelling Salesman Problem (TSP) instances shows that the approach has better algorithmic performance when compared against state-of-the-art algorithms from the literature

    A lightweight secure adaptive approach for internet-of-medical-things healthcare applications in edge-cloud-based networks

    Get PDF
    Mobile-cloud-based healthcare applications are increasingly growing in practice. For instance, healthcare, transport, and shopping applications are designed on the basis of the mobile cloud. For executing mobile-cloud applications, offloading and scheduling are fundamental mechanisms. However, mobile healthcare workflow applications with these methods are widely ignored, demanding applications in various aspects for healthcare monitoring, live healthcare service, and biomedical firms. However, these offloading and scheduling schemes do not consider the workflow applications' execution in their models. This paper develops a lightweight secure efficient offloading scheduling (LSEOS) metaheuristic model. LSEOS consists of light weight, and secure offloading and scheduling methods whose execution offloading delay is less than that of existing methods. The objective of LSEOS is to run workflow applications on other nodes and minimize the delay and security risk in the system. The metaheuristic LSEOS consists of the following components: adaptive deadlines, sorting, and scheduling with neighborhood search schemes. Compared to current strategies for delay and security validation in a model, computational results revealed that the LSEOS outperformed all available offloading and scheduling methods for process applications by 10% security ratio and by 29% regarding delays
    • …
    corecore