3,086 research outputs found

    A memory-based method to select the number of relevant components in Principal Component Analysis

    Get PDF
    We propose a new data-driven method to select the optimal number of relevant components in Principal Component Analysis (PCA). This new method applies to correlation matrices whose time autocorrelation function decays more slowly than an exponential, giving rise to long memory effects. In comparison with other available methods present in the literature, our procedure does not rely on subjective evaluations and is computationally inexpensive. The underlying basic idea is to use a suitable factor model to analyse the residual memory after sequentially removing more and more components, and stopping the process when the maximum amount of memory has been accounted for by the retained components. We validate our methodology on both synthetic and real financial data, and find in all cases a clear and computationally superior answer entirely compatible with available heuristic criteria, such as cumulative variance and cross-validation.Comment: 29 pages, publishe

    Stock market prediction using machine learning classifiers and social media, news

    Get PDF
    Accurate stock market prediction is of great interest to investors; however, stock markets are driven by volatile factors such as microblogs and news that make it hard to predict stock market index based on merely the historical data. The enormous stock market volatility emphasizes the need to effectively assess the role of external factors in stock prediction. Stock markets can be predicted using machine learning algorithms on information contained in social media and financial news, as this data can change investors’ behavior. In this paper, we use algorithms on social media and financial news data to discover the impact of this data on stock market prediction accuracy for ten subsequent days. For improving performance and quality of predictions, feature selection and spam tweets reduction are performed on the data sets. Moreover, we perform experiments to find such stock markets that are difficult to predict and those that are more influenced by social media and financial news. We compare results of different algorithms to find a consistent classifier. Finally, for achieving maximum prediction accuracy, deep learning is used and some classifiers are ensembled. Our experimental results show that highest prediction accuracies of 80.53% and 75.16% are achieved using social media and financial news, respectively. We also show that New York and Red Hat stock markets are hard to predict, New York and IBM stocks are more influenced by social media, while London and Microsoft stocks by financial news. Random forest classifier is found to be consistent and highest accuracy of 83.22% is achieved by its ensemble

    The Stock Exchange Prediction using Machine Learning Techniques: A Comprehensive and Systematic Literature Review

    Get PDF
    This literature review identifies and analyzes research topic trends, types of data sets, learning algorithm, methods improvements, and frameworks used in stock exchange prediction. A total of 81 studies were investigated, which were published regarding stock predictions in the period January 2015 to June 2020 which took into account the inclusion and exclusion criteria. The literature review methodology is carried out in three major phases: review planning, implementation, and report preparation, in nine steps from defining systematic review requirements to presentation of results. Estimation or regression, clustering, association, classification, and preprocessing analysis of data sets are the five main focuses revealed in the main study of stock prediction research. The classification method gets a share of 35.80% from related studies, the estimation method is 56.79%, data analytics is 4.94%, the rest is clustering and association is 1.23%. Furthermore, the use of the technical indicator data set is 74.07%, the rest are combinations of datasets. To develop a stock prediction model 48 different methods have been applied, 9 of the most widely applied methods were identified. The best method in terms of accuracy and also small error rate such as SVM, DNN, CNN, RNN, LSTM, bagging ensembles such as RF, boosting ensembles such as XGBoost, ensemble majority vote and the meta-learner approach is ensemble Stacking. Several techniques are proposed to improve prediction accuracy by combining several methods, using boosting algorithms, adding feature selection and using parameter and hyper-parameter optimization

    Ensemble deep learning: A review

    Get PDF
    Ensemble learning combines several individual models to obtain better generalization performance. Currently, deep learning models with multilayer processing architecture is showing better performance as compared to the shallow or traditional classification models. Deep ensemble learning models combine the advantages of both the deep learning models as well as the ensemble learning such that the final model has better generalization performance. This paper reviews the state-of-art deep ensemble models and hence serves as an extensive summary for the researchers. The ensemble models are broadly categorised into ensemble models like bagging, boosting and stacking, negative correlation based deep ensemble models, explicit/implicit ensembles, homogeneous /heterogeneous ensemble, decision fusion strategies, unsupervised, semi-supervised, reinforcement learning and online/incremental, multilabel based deep ensemble models. Application of deep ensemble models in different domains is also briefly discussed. Finally, we conclude this paper with some future recommendations and research directions

    Quantitative cryptocurrency trading: exploring the use of machine learning techniques

    Get PDF
    Machine learning techniques have found application in the study and development of quantitative trading systems. These systems usually exploit supervised models trained on historical data in order to automatically generate buy/sell signals on the financial markets. Although in this context a deep exploration of the Stock, Forex, and Future exchange markets has already been made, a more limited effort has been devoted to the application of machine learning techniques to the emerging cryptocurrency exchange market. This paper explores the potential of the most established classification and time series forecasting models in cryptocurrency trading by backtesting model performance over a eight year period. The results show that, due to the heterogeneity and volatility of the underlying financial instruments, prediction models based on series forecasting perform better than classification techniques. Furthermore, trading multiple cryptocurrencies at the same time significantly increases the overall returns compared to baseline strategies exclusively based on Bitcoin trading

    The impact of macroeconomic leading indicators on inventory management

    Get PDF
    Forecasting tactical sales is important for long term decisions such as procurement and informing lower level inventory management decisions. Macroeconomic indicators have been shown to improve the forecast accuracy at tactical level, as these indicators can provide early warnings of changing markets while at the same time tactical sales are sufficiently aggregated to facilitate the identification of useful leading indicators. Past research has shown that we can achieve significant gains by incorporating such information. However, at lower levels, that inventory decisions are taken, this is often not feasible due to the level of noise in the data. To take advantage of macroeconomic leading indicators at this level we need to translate the tactical forecasts into operational level ones. In this research we investigate how to best assimilate top level forecasts that incorporate such exogenous information with bottom level (at Stock Keeping Unit level) extrapolative forecasts. The aim is to demonstrate whether incorporating these variables has a positive impact on bottom level planning and eventually inventory levels. We construct appropriate hierarchies of sales and use that structure to reconcile the forecasts, and in turn the different available information, across levels. We are interested both at the point forecast and the prediction intervals, as the latter inform safety stock decisions. Therefore the contribution of this research is twofold. We investigate the usefulness of macroeconomic leading indicators for SKU level forecasts and alternative ways to estimate the variance of hierarchically reconciled forecasts. We provide evidence using a real case study

    Technical and Fundamental Features Analysis for Stock Market Prediction with Data Mining Methods

    Get PDF
    Predicting stock prices is an essential objective in the financial world. Forecasting stock returns and their risk represents one of the most critical concerns of market decision makers. This thesis investigates the stock price forecasting with three approaches from the data mining concept and shows how different elements in the stock price can help to enhance the accuracy of our prediction. For this reason, the first and second approaches capture many fundamental indicators from the stocks and implement them as explanatory variables to do stock price classification and forecasting. In the third approach, technical features from the candlestick representation of the share prices are extracted and used to enhance the accuracy of the forecasting. In each approach, different tools and techniques from data mining and machine learning are employed to justify why the forecasting is working. Furthermore, since the idea is to evaluate the potential of features in the stock trend forecasting, therefore we diversify our experiments using both technical and fundamental features. Therefore, in the first approach, a three-stage methodology is developed while in the first step, a comprehensive investigation of all possible features which can be effective on stocks risk and return are identified. Then, in the next stage, risk and return are predicted by applying data mining techniques for the given features. Finally, we develop a hybrid algorithm, based on some filters and function-based clustering; and re-predicted the risk and return of stocks. In the second approach, instead of using single classifiers, a fusion model is proposed based on the use of multiple diverse base classifiers that operate on a common input and a meta-classifier that learns from base classifiers’ outputs to obtain a more precise stock return and risk predictions. A set of diversity methods, including Bagging, Boosting, and AdaBoost, is applied to create diversity in classifier combinations. Moreover, the number and procedure for selecting base classifiers for fusion schemes are determined using a methodology based on dataset clustering and candidate classifiers’ accuracy. Finally, in the third approach, a novel forecasting model for stock markets based on the wrapper ANFIS (Adaptive Neural Fuzzy Inference System) – ICA (Imperialist Competitive Algorithm) and technical analysis of Japanese Candlestick is presented. Two approaches of Raw-based and Signal-based are devised to extract the model’s input variables and buy and sell signals are considered as output variables. To illustrate the methodologies, for the first and second approaches, Tehran Stock Exchange (TSE) data for the period from 2002 to 2012 are applied, while for the third approach, we used General Motors and Dow Jones indexes.Predicting stock prices is an essential objective in the financial world. Forecasting stock returns and their risk represents one of the most critical concerns of market decision makers. This thesis investigates the stock price forecasting with three approaches from the data mining concept and shows how different elements in the stock price can help to enhance the accuracy of our prediction. For this reason, the first and second approaches capture many fundamental indicators from the stocks and implement them as explanatory variables to do stock price classification and forecasting. In the third approach, technical features from the candlestick representation of the share prices are extracted and used to enhance the accuracy of the forecasting. In each approach, different tools and techniques from data mining and machine learning are employed to justify why the forecasting is working. Furthermore, since the idea is to evaluate the potential of features in the stock trend forecasting, therefore we diversify our experiments using both technical and fundamental features. Therefore, in the first approach, a three-stage methodology is developed while in the first step, a comprehensive investigation of all possible features which can be effective on stocks risk and return are identified. Then, in the next stage, risk and return are predicted by applying data mining techniques for the given features. Finally, we develop a hybrid algorithm, based on some filters and function-based clustering; and re-predicted the risk and return of stocks. In the second approach, instead of using single classifiers, a fusion model is proposed based on the use of multiple diverse base classifiers that operate on a common input and a meta-classifier that learns from base classifiers’ outputs to obtain a more precise stock return and risk predictions. A set of diversity methods, including Bagging, Boosting, and AdaBoost, is applied to create diversity in classifier combinations. Moreover, the number and procedure for selecting base classifiers for fusion schemes are determined using a methodology based on dataset clustering and candidate classifiers’ accuracy. Finally, in the third approach, a novel forecasting model for stock markets based on the wrapper ANFIS (Adaptive Neural Fuzzy Inference System) – ICA (Imperialist Competitive Algorithm) and technical analysis of Japanese Candlestick is presented. Two approaches of Raw-based and Signal-based are devised to extract the model’s input variables and buy and sell signals are considered as output variables. To illustrate the methodologies, for the first and second approaches, Tehran Stock Exchange (TSE) data for the period from 2002 to 2012 are applied, while for the third approach, we used General Motors and Dow Jones indexes.154 - Katedra financívyhově
    • …
    corecore