333,059 research outputs found

    A Review on Software Architectures for Heterogeneous Platforms

    Full text link
    The increasing demands for computing performance have been a reality regardless of the requirements for smaller and more energy efficient devices. Throughout the years, the strategy adopted by industry was to increase the robustness of a single processor by increasing its clock frequency and mounting more transistors so more calculations could be executed. However, it is known that the physical limits of such processors are being reached, and one way to fulfill such increasing computing demands has been to adopt a strategy based on heterogeneous computing, i.e., using a heterogeneous platform containing more than one type of processor. This way, different types of tasks can be executed by processors that are specialized in them. Heterogeneous computing, however, poses a number of challenges to software engineering, especially in the architecture and deployment phases. In this paper, we conduct an empirical study that aims at discovering the state-of-the-art in software architecture for heterogeneous computing, with focus on deployment. We conduct a systematic mapping study that retrieved 28 studies, which were critically assessed to obtain an overview of the research field. We identified gaps and trends that can be used by both researchers and practitioners as guides to further investigate the topic

    Fault-tolerant distributed computing scheme based on erasure codes

    Get PDF
    Some emerging classes of distributed computing systems, such peer-to-peer or grid computing computing systems, are composed of heterogeneous computing resources potentially unreliable. This paper proposes to use erasure codes to improve the fault-tolerance of parallel distributed computing applications in this context. A general method to generate redundant processes from a set of parallel processes is presented. This scheme allows the recovery of the result of the application even if some of the processes crash

    Document Classification Systems in Heterogeneous Computing Environments

    Get PDF
    Datacenter workloads demand high throughput, low cost and power efficient solutions. In most data centers the operating costs dominates the infrastructure cost. The ever growing amounts of data and the critical need for higher throughput, more energy efficient document classification solutions motivated us to investigate alternatives to the traditional homogeneous CPU based implementations of document classification systems. Several heterogeneous systems were investigated in the past where CPUs were combined with GPUs and FPGAs as system accelerators. The increasing complexity of FPGAs made them an interesting device in the heterogeneous computing environments and on the other hand difficult to program using Hardware Description languages. We explore the trade-offs when using high level synthesis and low level synthesis when programming FPGAs. Using low level synthesis results in less hardware resource usage on FPGAs and also offers the higher throughput compared to using HLS tool. While using HLS tool different heterogeneous computing devices such as multicore CPU and GPU targeted. Through our implementation experience and empirical results for data centric applications, we conclude that we can achieve power efficient results for these set of applications by either using low level synthesis or high level synthesis for programming FPGAs
    corecore