35,860 research outputs found

    Recent Advances in Transfer Learning for Cross-Dataset Visual Recognition: A Problem-Oriented Perspective

    Get PDF
    This paper takes a problem-oriented perspective and presents a comprehensive review of transfer learning methods, both shallow and deep, for cross-dataset visual recognition. Specifically, it categorises the cross-dataset recognition into seventeen problems based on a set of carefully chosen data and label attributes. Such a problem-oriented taxonomy has allowed us to examine how different transfer learning approaches tackle each problem and how well each problem has been researched to date. The comprehensive problem-oriented review of the advances in transfer learning with respect to the problem has not only revealed the challenges in transfer learning for visual recognition, but also the problems (e.g. eight of the seventeen problems) that have been scarcely studied. This survey not only presents an up-to-date technical review for researchers, but also a systematic approach and a reference for a machine learning practitioner to categorise a real problem and to look up for a possible solution accordingly

    Beyond Intra-modality: A Survey of Heterogeneous Person Re-identification

    Full text link
    An efficient and effective person re-identification (ReID) system relieves the users from painful and boring video watching and accelerates the process of video analysis. Recently, with the explosive demands of practical applications, a lot of research efforts have been dedicated to heterogeneous person re-identification (Hetero-ReID). In this paper, we provide a comprehensive review of state-of-the-art Hetero-ReID methods that address the challenge of inter-modality discrepancies. According to the application scenario, we classify the methods into four categories -- low-resolution, infrared, sketch, and text. We begin with an introduction of ReID, and make a comparison between Homogeneous ReID (Homo-ReID) and Hetero-ReID tasks. Then, we describe and compare existing datasets for performing evaluations, and survey the models that have been widely employed in Hetero-ReID. We also summarize and compare the representative approaches from two perspectives, i.e., the application scenario and the learning pipeline. We conclude by a discussion of some future research directions. Follow-up updates are avaible at: https://github.com/lightChaserX/Awesome-Hetero-reIDComment: Accepted by IJCAI 2020. Project url: https://github.com/lightChaserX/Awesome-Hetero-reI

    Learning with Augmented Features for Heterogeneous Domain Adaptation

    Full text link
    We propose a new learning method for heterogeneous domain adaptation (HDA), in which the data from the source domain and the target domain are represented by heterogeneous features with different dimensions. Using two different projection matrices, we first transform the data from two domains into a common subspace in order to measure the similarity between the data from two domains. We then propose two new feature mapping functions to augment the transformed data with their original features and zeros. The existing learning methods (e.g., SVM and SVR) can be readily incorporated with our newly proposed augmented feature representations to effectively utilize the data from both domains for HDA. Using the hinge loss function in SVM as an example, we introduce the detailed objective function in our method called Heterogeneous Feature Augmentation (HFA) for a linear case and also describe its kernelization in order to efficiently cope with the data with very high dimensions. Moreover, we also develop an alternating optimization algorithm to effectively solve the nontrivial optimization problem in our HFA method. Comprehensive experiments on two benchmark datasets clearly demonstrate that HFA outperforms the existing HDA methods.Comment: ICML201
    • …
    corecore