5,987 research outputs found

    Durable response to serial tyrosine kinase inhibitors (TKIs) in an adolescent with metastatic TFG-ROS1 fusion positive Inflammatory Myofibroblastic Tumor (IMT)

    Get PDF
    Here, we present the case of an adolescent with a rare metastatic Inflammatory myofibroblastic tumor (IMT) harboring a TFG-ROS1 fusion initially detected on tumor progression and retrospectively identified in the primary tumor after targeted RNA sequencing. The patient benefitted from sequential TKIs over a 5-year period with response to the third generation ALK/ROS inhibitor, lorlatinib leading to resection of the primary tumor. Detailed molecular analysis can identify targetable oncogenic kinase fusions that alters management in patients with unresectable disease and should be considered in all patients

    Downregulation of FIP200 Induces Apoptosis of Glioblastoma Cells and Microvascular Endothelial Cells by Enhancing Pyk2 Activity

    Get PDF
    The expression of focal adhesion kinase family interacting protein of 200-kDa (FIP200) in normal brain is limited to some neurons and glial cells. On immunohistochemical analysis of biopsies of glioblastoma tumors, we detected FIP200 in the tumor cells, tumor-associated endothelial cells, and occasional glial cells. Human glioblastoma tumor cell lines and immortalized human astrocytes cultured in complete media also expressed FIP200 as did primary human brain microvessel endothelial cells (MvEC), which proliferate in culture and resemble reactive endothelial cells. Downregulation of endogenous expression of FIP200 using small interfering RNA resulted in induction of apoptosis in the human glioblastoma tumor cells, immortalized human astrocytes, and primary human brain MvEC. It has been shown by other investigators using cells from other tissues that FIP200 can interact directly with, and inhibit, proline-rich tyrosine kinase 2 (Pyk2) and focal adhesion kinase (FAK). In the human glioblastoma tumor cells, immortalized human astrocytes, and primary human brain MvEC, we found that downregulation of FIP200 increased the activity of Pyk2 without increasing its expression, but did not affect the activity or expression of FAK. Coimmunoprecipitation and colocalization studies indicated that the endogenous FIP200 was largely associated with Pyk2, rather than FAK, in the glioblastoma tumor cells and brain MvEC. Moreover, the pro-apoptotic effect of FIP200 downregulation was inhibited significantly by a TAT-Pyk2-fusion protein containing the Pyk2 autophosphorylation site in these cells. In summary, downregulation of endogenous FIP200 protein in glioblastoma tumor cells, astrocytes, and brain MvECs promotes apoptosis, most likely due to the removal of a direct interaction of FIP200 with Pyk2 that inhibits Pyk2 activation, suggesting that FIP200 expression may be required for the survival of all three cell types found in glioblastoma tumors

    The potential for liquid biopsies in the precision medical treatment of breast cancer.

    Get PDF
    Currently the clinical management of breast cancer relies on relatively few prognostic/predictive clinical markers (estrogen receptor, progesterone receptor, HER2), based on primary tumor biology. Circulating biomarkers, such as circulating tumor DNA (ctDNA) or circulating tumor cells (CTCs) may enhance our treatment options by focusing on the very cells that are the direct precursors of distant metastatic disease, and probably inherently different than the primary tumor's biology. To shift the current clinical paradigm, assessing tumor biology in real time by molecularly profiling CTCs or ctDNA may serve to discover therapeutic targets, detect minimal residual disease and predict response to treatment. This review serves to elucidate the detection, characterization, and clinical application of CTCs and ctDNA with the goal of precision treatment of breast cancer

    Contribution of gap junctional communication between tumor cells and astroglia to the invasion of the brain parenchyma by human glioblastomas

    Get PDF
    BACKGROUND: Gliomas are "intraparenchymally metastatic" tumors, invading the brain in a non-destructive way that suggests cooperation between glioma cells and their environment. Recent studies using an engineered rodent C6 tumor cell line have pointed to mechanisms of invasion that involved gap junctional communication (GJC), with connexin 43 as a substrate. We explored whether this concept may have clinical relevance by analyzing the participation of GJC in human glioblastoma invasion. RESULTS: Three complementary in vitro assays were used: (i) seeding on collagen IV, to analyze homocellular interactions between tumor cells (ii) co-cultures with astrocytes, to study glioblastoma/astrocytes relationships and (iii) implantation into organotypic brain slice cultures, that mimic the three-dimensional parenchymal environment. Carbenoxolone, a potent blocker of GJC, inhibited cell migration in the two latter models. It paradoxically increased it in the first one. These results showed that homocellular interaction between tumor cells supports intercellular adhesion, whereas heterocellular glioblastoma/astrocytes interactions through functional GJC conversely support tumor cell migration. As demonstrated for the rodent cell line, connexin 43 may be responsible for this heterocellular functional coupling. Its levels of expression, high in astrocytes, correlated positively with invasiveness in biopsied tumors. CONCLUSIONS: our results underscore the potential clinical relevance of the concept put forward by other authors based on experiments with a rodent cell line, that glioblastoma cells use astrocytes as a substrate for their migration by subverting communication through connexin 43-dependent gap junctions

    Perspective review of what is needed for molecular-specific fluorescence-guided surgery

    Get PDF
    Molecular image-guided surgery has the potential for translating the tools of molecular pathology to real-time guidance in surgery. As a whole, there are incredibly positive indicators of growth, including the first United States Food and Drug Administration clearance of an enzyme-biosynthetic-activated probe for surgery guidance, and a growing number of companies producing agents and imaging systems. The strengths and opportunities must be continued but are hampered by important weaknesses and threats within the field. A key issue to solve is the inability of macroscopic imaging tools to resolve microscopic biological disease heterogeneity and the limitations in microscopic systems matching surgery workflow. A related issue is that parsing out true molecular-specific uptake from simple-enhanced permeability and retention is hard and requires extensive pathologic analysis or multiple in vivo tests, comparing fluorescence accumulation with standard histopathology and immunohistochemistry. A related concern in the field is the over-reliance on a finite number of chosen preclinical models, leading to early clinical translation when the probe might not be optimized for high intertumor variation or intratumor heterogeneity. The ultimate potential may require multiple probes, as are used in molecular pathology, and a combination with ultrahigh-resolution imaging and image recognition systems, which capture the data at a finer granularity than is possible by the surgeon. Alternatively, one might choose a more generalized approach by developing the tracer based on generic hallmarks of cancer to create a more "one-size-fits-all" concept, similar to metabolic aberrations as exploited in fluorodeoxyglucose-positron emission tomography (FDG-PET) (i.e., Warburg effect) or tumor acidity. Finally, methods to approach the problem of production cost minimization and regulatory approvals in a manner consistent with the potential revenue of the field will be important. In this area, some solid steps have been demonstrated in the use of fluorescent labeling commercial antibodies and separately in microdosing studies with small molecules. (C) The Authors

    MR imaging features of high-grade gliomas in murine models: How they compare with human disease, reflect tumor biology, and play a role in preclinical trials

    Get PDF
    Murine models are the most commonly used and best investigated among the animal models of HGG. They constitute an important weapon in the development and testing of new anticancer drugs and have long been used in preclinical trials. Neuroimaging methods, particularly MR imaging, offer important advantages for the evaluation of treatment response: shorter and more reliable treatment end points and insight on tumor biology and physiology through the use of functional imaging DWI, PWI, BOLD, and MR spectroscopy. This functional information has been progressively consolidated as a surrogate marker of tumor biology and genetics and may play a pivotal role in the assessment of specifically targeted drugs, both in clinical and preclinical trials. The purpose of this Research Perspectives was to compile, summarize, and critically assess the available information on the neuroimaging features of different murine models of HGGs, and explain how these correlate with human disease and reflect tumor biology.This work was supported by the Programme for Advanced Medical Education from Fundaçâo Champalimaud, Fundaçâo Calouste Gulbenkian, Ministério da Saúde and Fundaçâo para a Ciência e Tecnologia, Portugal, to the first author (A.R.B.), and by grants from the Spanish Ministry of Science and Innovation SAF 2008–01327 and the Community of Madrid S-BIO-2006–0170, to the last author (S.G.C.).Peer Reviewe

    Oncogenic variants guiding treatment in thoracic malignancies

    Get PDF
    The aim of this research project was to improve diagnostic methods, explore resistance mechanisms to targeted therapy and establish prognostic value of molecular biomarkers in non-small cell lung cancer (NSCLC) and esophageal squamous cell carcinoma (ESCC). We set up and validated the performance of an RNA-based assay allowing simultaneous testing of multiple therapeutic targets. This effort was successful and can be applied on biopsies in clinical practice. However, tumor-educated platelets of patients with known driver variants and NSCLC showed no tumor-derived mRNA molecules, so this cannot be implemented in clinical practice. Circulating tumor DNA levels in low disease-stage ESCC patients were associated with tumor load in real-time and may be used to monitor disease load. Personalized medicine facilitated by routine molecular diagnostics has markedly improved clinical management of cancer patients. We showed that high EGFR copy numbers as determined by amplicon-based NGS data predicts a worse overall survival in EGFR mutated patients treated with first-line EGFR-TKI, especially in those who developed a T790M mutation. To explore resistance mechanisms in BRAF p.(V600E) mutated patients treated with BRAF/MEK inhibitors we analyzed the presence of concurrent mutations of genes in the PI3K or MAPK pathways. This study revealed a comparable survival of patients with or without concurrent mutations. Finally, we described treatment response of two EGFR mutant patients who developed a BRAF V600E resistance mutation. Combined treatment with BRAF/MEK inhibitors and the EGFR-TKI osimertinib showed promising results, also in additional cases reported in the literature
    • …
    corecore