123,299 research outputs found

    MPICH-G2: A Grid-Enabled Implementation of the Message Passing Interface

    Full text link
    Application development for distributed computing "Grids" can benefit from tools that variously hide or enable application-level management of critical aspects of the heterogeneous environment. As part of an investigation of these issues, we have developed MPICH-G2, a Grid-enabled implementation of the Message Passing Interface (MPI) that allows a user to run MPI programs across multiple computers, at the same or different sites, using the same commands that would be used on a parallel computer. This library extends the Argonne MPICH implementation of MPI to use services provided by the Globus Toolkit for authentication, authorization, resource allocation, executable staging, and I/O, as well as for process creation, monitoring, and control. Various performance-critical operations, including startup and collective operations, are configured to exploit network topology information. The library also exploits MPI constructs for performance management; for example, the MPI communicator construct is used for application-level discovery of, and adaptation to, both network topology and network quality-of-service mechanisms. We describe the MPICH-G2 design and implementation, present performance results, and review application experiences, including record-setting distributed simulations.Comment: 20 pages, 8 figure

    Reasoning Services for the Semantic Grid

    Get PDF
    The Grid aims to support secure, flexible and coordinated resource sharing through providing a middleware platform for advanced distributing computing. Consequently, the Grid’s infrastructural machinery aims to allow collections of any kind of resources—computing, storage, data sets, digital libraries, scientific instruments, people, etc—to easily form Virtual Organisations (VOs) that cross organisational boundaries in order to work together to solve a problem. A Grid depends on understanding the available resources, their capabilities, how to assemble them and how to best exploit them. Thus Grid middleware and the Grid applications they support thrive on the metadata that describes resources in all their forms, the VOs, the policies that drive then and so on, together with the knowledge to apply that metadata intelligently

    QoE in Pull Based P2P-TV Systems: Overlay Topology Design Tradeoff

    Get PDF
    Abstract—This paper presents a systematic performance anal-ysis of pull P2P video streaming systems for live applications, providing guidelines for the design of the overlay topology and the chunk scheduling algorithm. The contribution of the paper is threefold: 1) we propose a realistic simulative model of the system that represents the effects of access bandwidth heterogeneity, latencies, peculiar characteristics of the video, while still guaranteeing good scalability properties; 2) we propose a new latency/bandwidth-aware overlay topology design strategy that improves application layer performance while reducing the underlying transport network stress; 3) we investigate the impact of chunk scheduling algorithms that explicitly exploit properties of encoded video. Results show that our proposal jointly improves the actual Quality of Experience of users and reduces the cost the transport network has to support. I

    Context-aware Dynamic Discovery and Configuration of 'Things' in Smart Environments

    Full text link
    The Internet of Things (IoT) is a dynamic global information network consisting of Internet-connected objects, such as RFIDs, sensors, actuators, as well as other instruments and smart appliances that are becoming an integral component of the future Internet. Currently, such Internet-connected objects or `things' outnumber both people and computers connected to the Internet and their population is expected to grow to 50 billion in the next 5 to 10 years. To be able to develop IoT applications, such `things' must become dynamically integrated into emerging information networks supported by architecturally scalable and economically feasible Internet service delivery models, such as cloud computing. Achieving such integration through discovery and configuration of `things' is a challenging task. Towards this end, we propose a Context-Aware Dynamic Discovery of {Things} (CADDOT) model. We have developed a tool SmartLink, that is capable of discovering sensors deployed in a particular location despite their heterogeneity. SmartLink helps to establish the direct communication between sensor hardware and cloud-based IoT middleware platforms. We address the challenge of heterogeneity using a plug in architecture. Our prototype tool is developed on an Android platform. Further, we employ the Global Sensor Network (GSN) as the IoT middleware for the proof of concept validation. The significance of the proposed solution is validated using a test-bed that comprises 52 Arduino-based Libelium sensors.Comment: Big Data and Internet of Things: A Roadmap for Smart Environments, Studies in Computational Intelligence book series, Springer Berlin Heidelberg, 201

    IUPC: Identification and Unification of Process Constraints

    Full text link
    Business Process Compliance (BPC) has gained significant momentum in research and practice during the last years. Although many approaches address BPC, they mostly assume the existence of some kind of unified base of process constraints and focus on their verification over the business processes. However, it remains unclear how such an inte- grated process constraint base can be built up, even though this con- stitutes the essential prerequisite for all further compliance checks. In addition, the heterogeneity of process constraints has been neglected so far. Without identification and separation of process constraints from domain rules as well as unification of process constraints, the success- ful IT support of BPC will not be possible. In this technical report we introduce a unified representation framework that enables the identifica- tion of process constraints from domain rules and their later unification within a process constraint base. Separating process constraints from domain rules can lead to significant reduction of compliance checking effort. Unification enables consistency checks and optimizations as well as maintenance and evolution of the constraint base on the other side.Comment: 13 pages, 4 figures, technical repor

    Semantic-based policy engineering for autonomic systems

    No full text
    This paper presents some important directions in the use of ontology-based semantics in achieving the vision of Autonomic Communications. We examine the requirements of Autonomic Communication with a focus on the demanding needs of ubiquitous computing environments, with an emphasis on the requirements shared with Autonomic Computing. We observe that ontologies provide a strong mechanism for addressing the heterogeneity in user task requirements, managed resources, services and context. We then present two complimentary approaches that exploit ontology-based knowledge in support of autonomic communications: service-oriented models for policy engineering and dynamic semantic queries using content-based networks. The paper concludes with a discussion of the major research challenges such approaches raise

    Social networks and performance in distributed learning communities

    Get PDF
    Social networks play an essential role in learning environments as a key channel for knowledge sharing and students' support. In distributed learning communities, knowledge sharing does not occur as spontaneously as when a working group shares the same physical space; knowledge sharing depends even more on student informal connections. In this study we analyse two distributed learning communities' social networks in order to understand how characteristics of the social structure can enhance students' success and performance. We used a monitoring system for social network data gathering. Results from correlation analyses showed that students' social network characteristics are related to their performancePostprint (published version
    • …
    corecore