3,194 research outputs found

    Multimodal Data Augmentation for Visual-Infrared Person ReID with Corrupted Data

    Full text link
    The re-identification (ReID) of individuals over a complex network of cameras is a challenging task, especially under real-world surveillance conditions. Several deep learning models have been proposed for visible-infrared (V-I) person ReID to recognize individuals from images captured using RGB and IR cameras. However, performance may decline considerably if RGB and IR images captured at test time are corrupted (e.g., noise, blur, and weather conditions). Although various data augmentation (DA) methods have been explored to improve the generalization capacity, these are not adapted for V-I person ReID. In this paper, a specialized DA strategy is proposed to address this multimodal setting. Given both the V and I modalities, this strategy allows to diminish the impact of corruption on the accuracy of deep person ReID models. Corruption may be modality-specific, and an additional modality often provides complementary information. Our multimodal DA strategy is designed specifically to encourage modality collaboration and reinforce generalization capability. For instance, punctual masking of modalities forces the model to select the informative modality. Local DA is also explored for advanced selection of features within and among modalities. The impact of training baseline fusion models for V-I person ReID using the proposed multimodal DA strategy is assessed on corrupted versions of the SYSU-MM01, RegDB, and ThermalWORLD datasets in terms of complexity and efficiency. Results indicate that using our strategy provides V-I ReID models the ability to exploit both shared and individual modality knowledge so they can outperform models trained with no or unimodal DA. GitHub code: https://github.com/art2611/ML-MDA.Comment: 8 pages of main content, 2 pages of references, 2 pages of supplementary material, 3 figures, WACV 2023 RWS workshop

    CMTR: Cross-modality Transformer for Visible-infrared Person Re-identification

    Full text link
    Visible-infrared cross-modality person re-identification is a challenging ReID task, which aims to retrieve and match the same identity's images between the heterogeneous visible and infrared modalities. Thus, the core of this task is to bridge the huge gap between these two modalities. The existing convolutional neural network-based methods mainly face the problem of insufficient perception of modalities' information, and can not learn good discriminative modality-invariant embeddings for identities, which limits their performance. To solve these problems, we propose a cross-modality transformer-based method (CMTR) for the visible-infrared person re-identification task, which can explicitly mine the information of each modality and generate better discriminative features based on it. Specifically, to capture modalities' characteristics, we design the novel modality embeddings, which are fused with token embeddings to encode modalities' information. Furthermore, to enhance representation of modality embeddings and adjust matching embeddings' distribution, we propose a modality-aware enhancement loss based on the learned modalities' information, reducing intra-class distance and enlarging inter-class distance. To our knowledge, this is the first work of applying transformer network to the cross-modality re-identification task. We implement extensive experiments on the public SYSU-MM01 and RegDB datasets, and our proposed CMTR model's performance significantly surpasses existing outstanding CNN-based methods.Comment: 11 pages, 7 figures, 7 table

    Unsupervised Visible-Infrared Person ReID by Collaborative Learning with Neighbor-Guided Label Refinement

    Full text link
    Unsupervised learning visible-infrared person re-identification (USL-VI-ReID) aims at learning modality-invariant features from unlabeled cross-modality dataset, which is crucial for practical applications in video surveillance systems. The key to essentially address the USL-VI-ReID task is to solve the cross-modality data association problem for further heterogeneous joint learning. To address this issue, we propose a Dual Optimal Transport Label Assignment (DOTLA) framework to simultaneously assign the generated labels from one modality to its counterpart modality. The proposed DOTLA mechanism formulates a mutual reinforcement and efficient solution to cross-modality data association, which could effectively reduce the side-effects of some insufficient and noisy label associations. Besides, we further propose a cross-modality neighbor consistency guided label refinement and regularization module, to eliminate the negative effects brought by the inaccurate supervised signals, under the assumption that the prediction or label distribution of each example should be similar to its nearest neighbors. Extensive experimental results on the public SYSU-MM01 and RegDB datasets demonstrate the effectiveness of the proposed method, surpassing existing state-of-the-art approach by a large margin of 7.76% mAP on average, which even surpasses some supervised VI-ReID methods

    Visible-Infrared Person Re-Identification Using Privileged Intermediate Information

    Full text link
    Visible-infrared person re-identification (ReID) aims to recognize a same person of interest across a network of RGB and IR cameras. Some deep learning (DL) models have directly incorporated both modalities to discriminate persons in a joint representation space. However, this cross-modal ReID problem remains challenging due to the large domain shift in data distributions between RGB and IR modalities. % This paper introduces a novel approach for a creating intermediate virtual domain that acts as bridges between the two main domains (i.e., RGB and IR modalities) during training. This intermediate domain is considered as privileged information (PI) that is unavailable at test time, and allows formulating this cross-modal matching task as a problem in learning under privileged information (LUPI). We devised a new method to generate images between visible and infrared domains that provide additional information to train a deep ReID model through an intermediate domain adaptation. In particular, by employing color-free and multi-step triplet loss objectives during training, our method provides common feature representation spaces that are robust to large visible-infrared domain shifts. % Experimental results on challenging visible-infrared ReID datasets indicate that our proposed approach consistently improves matching accuracy, without any computational overhead at test time. The code is available at: \href{https://github.com/alehdaghi/Cross-Modal-Re-ID-via-LUPI}{https://github.com/alehdaghi/Cross-Modal-Re-ID-via-LUPI
    • …
    corecore