2,375 research outputs found

    Hessian barrier algorithms for linearly constrained optimization problems

    Get PDF
    In this paper, we propose an interior-point method for linearly constrained optimization problems (possibly nonconvex). The method - which we call the Hessian barrier algorithm (HBA) - combines a forward Euler discretization of Hessian Riemannian gradient flows with an Armijo backtracking step-size policy. In this way, HBA can be seen as an alternative to mirror descent (MD), and contains as special cases the affine scaling algorithm, regularized Newton processes, and several other iterative solution methods. Our main result is that, modulo a non-degeneracy condition, the algorithm converges to the problem's set of critical points; hence, in the convex case, the algorithm converges globally to the problem's minimum set. In the case of linearly constrained quadratic programs (not necessarily convex), we also show that the method's convergence rate is O(1/kρ)\mathcal{O}(1/k^\rho) for some ρ(0,1]\rho\in(0,1] that depends only on the choice of kernel function (i.e., not on the problem's primitives). These theoretical results are validated by numerical experiments in standard non-convex test functions and large-scale traffic assignment problems.Comment: 27 pages, 6 figure

    Hessian barrier algorithms for linearly constrained optimization problems

    Get PDF
    International audienceIn this paper, we propose an interior-point method for linearly constrained-and possibly nonconvex-optimization problems. The method-which we call the Hessian barrier algorithm (HBA)-combines a forward Euler discretization of Hessian-Riemannian gradient flows with an Armijo backtracking step-size policy. In this way, HBA can be seen as an alternative to mirror descent, and contains as special cases the affine scaling algorithm, regularized Newton processes, and several other iterative solution methods. Our main result is that, modulo a nondegeneracy condition, the algorithm converges to the problem's critical set; hence, in the convex case, the algorithm converges globally to the problem's minimum set. In the case of linearly constrained quadratic programs (not necessarily convex), we also show that the method's convergence rate is O(1/kρ)O(1/k^\rho) for some ρ(0,1]\rho \in (0, 1] that depends only on the choice of kernel function (i.e., not on the problem's primi-tives). These theoretical results are validated by numerical experiments in standard nonconvex test functions and large-scale traffic assignment problems

    A Primal-Dual Augmented Lagrangian

    Get PDF
    Nonlinearly constrained optimization problems can be solved by minimizing a sequence of simpler unconstrained or linearly constrained subproblems. In this paper, we discuss the formulation of subproblems in which the objective is a primal-dual generalization of the Hestenes-Powell augmented Lagrangian function. This generalization has the crucial feature that it is minimized with respect to both the primal and the dual variables simultaneously. A benefit of this approach is that the quality of the dual variables is monitored explicitly during the solution of the subproblem. Moreover, each subproblem may be regularized by imposing explicit bounds on the dual variables. Two primal-dual variants of conventional primal methods are proposed: a primal-dual bound constrained Lagrangian (pdBCL) method and a primal-dual \ell1 linearly constrained Lagrangian (pd\ell1-LCL) method

    A Distributed Newton Method for Network Utility Maximization

    Full text link
    Most existing work uses dual decomposition and subgradient methods to solve Network Utility Maximization (NUM) problems in a distributed manner, which suffer from slow rate of convergence properties. This work develops an alternative distributed Newton-type fast converging algorithm for solving network utility maximization problems with self-concordant utility functions. By using novel matrix splitting techniques, both primal and dual updates for the Newton step can be computed using iterative schemes in a decentralized manner with limited information exchange. Similarly, the stepsize can be obtained via an iterative consensus-based averaging scheme. We show that even when the Newton direction and the stepsize in our method are computed within some error (due to finite truncation of the iterative schemes), the resulting objective function value still converges superlinearly to an explicitly characterized error neighborhood. Simulation results demonstrate significant convergence rate improvement of our algorithm relative to the existing subgradient methods based on dual decomposition.Comment: 27 pages, 4 figures, LIDS report, submitted to CDC 201

    Interior-point solver for convex separable block-angular problems

    Get PDF
    Constraints matrices with block-angular structures are pervasive in Optimization. Interior-point methods have shown to be competitive for these structured problems by exploiting the linear algebra. One of these approaches solved the normal equations using sparse Cholesky factorizations for the block constraints, and a preconditioned conjugate gradient (PCG) for the linking constraints. The preconditioner is based on a power series expansion which approximates the inverse of the matrix of the linking constraints system. In this work we present an efficient solver based on this algorithm. Some of its features are: it solves linearly constrained convex separable problems (linear, quadratic or nonlinear); both Newton and second-order predictor-corrector directions can be used, either with the Cholesky+PCG scheme or with a Cholesky factorization of normal equations; the preconditioner may include any number of terms of the power series; for any number of these terms, it estimates the spectral radius of the matrix in the power series (which is instrumental for the quality of the precondi- tioner). The solver has been hooked to SML, a structure-conveying modelling language based on the popular AMPL modeling language. Computational results are reported for some large and/or difficult instances in the literature: (1) multicommodity flow problems; (2) minimum congestion problems; (3) statistical data protection problems using l1 and l2 distances (which are linear and quadratic problems, respectively), and the pseudo-Huber function, a nonlinear approximation to l1 which improves the preconditioner. In the largest instances, of up to 25 millions of variables and 300000 constraints, this approach is from two to three orders of magnitude faster than state-of-the-art linear and quadratic optimization solvers.Preprin

    Multiplier-continuation algorthms for constrained optimization

    Get PDF
    Several path following algorithms based on the combination of three smooth penalty functions, the quadratic penalty for equality constraints and the quadratic loss and log barrier for inequality constraints, their modern counterparts, augmented Lagrangian or multiplier methods, sequential quadratic programming, and predictor-corrector continuation are described. In the first phase of this methodology, one minimizes the unconstrained or linearly constrained penalty function or augmented Lagrangian. A homotopy path generated from the functions is then followed to optimality using efficient predictor-corrector continuation methods. The continuation steps are asymptotic to those taken by sequential quadratic programming which can be used in the final steps. Numerical test results show the method to be efficient, robust, and a competitive alternative to sequential quadratic programming

    A Geometric Approach to Sound Source Localization from Time-Delay Estimates

    Get PDF
    This paper addresses the problem of sound-source localization from time-delay estimates using arbitrarily-shaped non-coplanar microphone arrays. A novel geometric formulation is proposed, together with a thorough algebraic analysis and a global optimization solver. The proposed model is thoroughly described and evaluated. The geometric analysis, stemming from the direct acoustic propagation model, leads to necessary and sufficient conditions for a set of time delays to correspond to a unique position in the source space. Such sets of time delays are referred to as feasible sets. We formally prove that every feasible set corresponds to exactly one position in the source space, whose value can be recovered using a closed-form localization mapping. Therefore we seek for the optimal feasible set of time delays given, as input, the received microphone signals. This time delay estimation problem is naturally cast into a programming task, constrained by the feasibility conditions derived from the geometric analysis. A global branch-and-bound optimization technique is proposed to solve the problem at hand, hence estimating the best set of feasible time delays and, subsequently, localizing the sound source. Extensive experiments with both simulated and real data are reported; we compare our methodology to four state-of-the-art techniques. This comparison clearly shows that the proposed method combined with the branch-and-bound algorithm outperforms existing methods. These in-depth geometric understanding, practical algorithms, and encouraging results, open several opportunities for future work.Comment: 13 pages, 2 figures, 3 table, journa
    corecore