184 research outputs found

    VIKOR method for multiple criteria group decision making under 2-tuple linguistic neutrosophic environment

    Get PDF
    In this article, the VIKOR method is proposed to solve the multiple criteria group decision making (MCGDM) with 2-tuple linguistic neutrosophic numbers (2TLNNs). Firstly, the fundamental concepts, operation formulas and distance calculating method of 2TLNNs are introduced. Then some aggregation operators of 2TLNNs are reviewed. Thereafter, the original VIKOR method is extended to 2TLNNs and the calculating steps of VIKOR method with 2TLNNs are proposed. In the proposed method, it’s more reasonable and scientific for considering the conflicting criteria. Furthermore, the VIKOR are extended to interval-valued 2-tuple linguistic neutrosophic numbers (IV2TLNNs). Moreover, a numerical example for green supplier selection has been given to illustrate the new method and some comparisons are also conducted to further illustrate advantages of the new method

    An Extended VIKOR Method for Multiple Criteria Group Decision Making with Triangular Fuzzy Neutrosophic Numbers

    Get PDF
    In this article, we combine the original VIKOR model with a triangular fuzzy neutrosophic set to propose the triangular fuzzy neutrosophic VIKOR method. In the extended method, we use the triangular fuzzy neutrosophic numbers (TFNNs) to present the criteria values in multiple criteria group decision making (MCGDM) problems. Firstly, we summarily introduce the fundamental concepts, operation formulas and distance calculating method of TFNNs. Then we review some aggregation operators of TFNNs. Thereafter, we extend the original VIKOR model to the triangular fuzzy neutrosophic environment and introduce the calculating steps of the TFNNs VIKOR method, our proposed method which is more reasonable and scientific for considering the conflicting criteria. Furthermore, a numerical example for potential evaluation of emerging technology commercialization is presented to illustrate the new method, and some comparisons are also conducted to further illustrate advantages of the new method

    (R1509) TOPSIS and VIKOR Methods for Spherical Fuzzy Soft Set Aggregating Operator Framework

    Get PDF
    The Spherical Fuzzy Soft (SFS) set is a generalization of the Pythagorean fuzzy soft set and the intuitionistic fuzzy soft set. We introduce the concept of aggregating SFS decision matrices based on aggregated operations. The techniques for order of preference by similarity to ideal solution (TOPSIS) and viekriterijumsko kompromisno rangiranje (VIKOR) for the SFS approaches are the strong points of multi criteria group decision making (MCGDM), which is various extensions of fuzzy soft sets. We define a score function based on aggregating TOPSIS and VIKOR methods to the SFS-positive and SFS-negative ideal solutions. The TOPSIS and VIKOR methods provide decision-making weights. To find the optimal alternative under this condition, closeness is introduced. Also, we obtain an algorithm that deals with the MCGDM problems based on an aggregating operator. Finally, a numerical example of the MCGDM problem is given to verify the practicality of the aggregating operators

    A systematic review on multi-criteria group decision-making methods based on weights: analysis and classification scheme

    Get PDF
    Interest in group decision-making (GDM) has been increasing prominently over the last decade. Access to global databases, sophisticated sensors which can obtain multiple inputs or complex problems requiring opinions from several experts have driven interest in data aggregation. Consequently, the field has been widely studied from several viewpoints and multiple approaches have been proposed. Nevertheless, there is a lack of general framework. Moreover, this problem is exacerbated in the case of experts’ weighting methods, one of the most widely-used techniques to deal with multiple source aggregation. This lack of general classification scheme, or a guide to assist expert knowledge, leads to ambiguity or misreading for readers, who may be overwhelmed by the large amount of unclassified information currently available. To invert this situation, a general GDM framework is presented which divides and classifies all data aggregation techniques, focusing on and expanding the classification of experts’ weighting methods in terms of analysis type by carrying out an in-depth literature review. Results are not only classified but analysed and discussed regarding multiple characteristics, such as MCDMs in which they are applied, type of data used, ideal solutions considered or when they are applied. Furthermore, general requirements supplement this analysis such as initial influence, or component division considerations. As a result, this paper provides not only a general classification scheme and a detailed analysis of experts’ weighting methods but also a road map for researchers working on GDM topics or a guide for experts who use these methods. Furthermore, six significant contributions for future research pathways are provided in the conclusions.The first author acknowledges support from the Spanish Ministry of Universities [grant number FPU18/01471]. The second and third author wish to recognize their support from the Serra Hunter program. Finally, this work was supported by the Catalan agency AGAUR through its research group support program (2017SGR00227). This research is part of the R&D project IAQ4EDU, reference no. PID2020-117366RB-I00, funded by MCIN/AEI/10.13039/ 501100011033.Peer ReviewedPostprint (published version

    RISK PRIORITY EVALUATION OF POWER TRANSFORMER PARTS BASED ON HYBRID FMEA FRAMEWORK UNDER HESITANT FUZZY ENVIRONMENT

    Get PDF
    The power transformer is one of the most critical facilities in the power system, and its running status directly impacts the power system's security. It is essential to research the risk priority evaluation of the power transformer parts. Failure mode and effects analysis (FMEA) is a methodology for analyzing the potential failure modes (FMs) within a system in various industrial devices. This study puts forward a hybrid FMEA framework integrating novel hesitant fuzzy aggregation tools and CRITIC (Criteria Importance Through Inter-criteria Correlation) method. In this framework, the hesitant fuzzy sets (HFSs) are used to depict the uncertainty in risk evaluation. Then, an improved HFWA (hesitant fuzzy weighted averaging) operator is adopted to fuse risk evaluation for FMEA experts. This aggregation manner can consider different lengths of HFSs and the support degrees among the FMEA experts. Next, the novel HFWGA (hesitant fuzzy weighted geometric averaging) operator with CRITIC weights is developed to determine the risk priority of each FM. This method can satisfy the multiplicative characteristic of the RPN (risk priority number) method of the conventional FMEA model and reflect the correlations between risk indicators. Finally, a real example of the risk priority evaluation of power transformer parts is given to show the applicability and feasibility of the proposed hybrid FMEA framework. Comparison and sensitivity studies are also offered to verify the effectiveness of the improved risk assessment approach

    Pythagorean fuzzy combinative distance-based assessment with pure linguistic information and its application to financial strategies of multi-national companies

    Get PDF
    This article addresses the issue of selecting Financial Strategies in Multi-National companies (F.S.M.). The F.S.M. typically has to consider multiple factors involving multiple stakeholders and, hence, can be handled by applying an appropriate Multi-Criteria Group Decision-Making (M.C.G.D.M.) approach. To address this issue, we develop an M.C.G.D.M. framework to tackle the F.S.M. problem. To handle inherent uncertainty in business decisions as reflected by linguistic reasoning, we embark on constructing a Linguistic Pythagorean Fuzzy (L.P.F.) M.C.G.D.M. framework that is capable of tackling both uncertain decision information and linguistic variables. The proposed approach extends the combinative distancebased assessment (C.O.D.A.S.) method into the L.P.F. environment, and processes decision input expressed as Pythagorean fuzzy sets (P.F.S.) and pure linguistic variables (rather than converting linguistic information into fuzzy numbers). The developed L.P.F.- C.O.D.A.S. technique aggregates the L.P.F. information and is applied to the F.S.M. problem with uncertain linguistic information. A comparative analysis is carried out to compare the results obtained from the proposed L.P.F.-C.O.D.A.S. approach with those from other extensions of C.O.D.A.S. Furthermore, a sensitivity analysis is conducted to check the impact of changes in a distance threshold parameter on the ranking results

    A Security-by-Design Decision-Making Model for Risk Management in Autonomous Vehicles

    Get PDF
    Autonomous/self-driving vehicles have gained significant attention these days, as one of the intelligent transportation systems. However, those vehicles have risks related to their physical implementation and security against cyber threats. Therefore, this study proposes a new security-by-design model for estimating the uncertainty of autonomous vehicles and measuring cyber risks; thus it assists decision-makers in addressing the risks of the physical design and their attack surfaces. The proposed model is developed using neutrosophic sets that efficiently tackle multi-criteria decision-making (MCDM) problems with extensive conflicting criteria and alternatives. The proposed model integrates MCDM, Analytic Hierarchy Process (AHP), Multi-Attributive Border Approximation Area Comparison (MABAC), and Preference Ranking Organization Method for Enrichment Evaluations II (PROMETHEE II), along with single-valued neutrosophic sets (SVNSs). An illustrative case considering ten risks in self-driving vehicles is used to validate the feasibility of the proposed model. Compared to the state-of-the-art methods, the proposed model is considered consistent and reliable to deal with and represent uncertainty and incomplete risk information using neutrosophic sets

    A decision-making framework based on the Fermatean hesitant fuzzy distance measure and TOPSIS

    Get PDF
    A particularly useful assessment tool for evaluating uncertainty and dealing with fuzziness is the Fermatean fuzzy set (FFS), which expands the membership and non-membership degree requirements. Distance measurement has been extensively employed in several fields as an essential approach that may successfully disclose the differences between fuzzy sets. In this article, we discuss various novel distance measures in Fermatean hesitant fuzzy environments as research on distance measures for FFS is in its early stages. These new distance measures include weighted distance measures and ordered weighted distance measures. This justification serves as the foundation for the construction of the generalized Fermatean hesitation fuzzy hybrid weighted distance (DGFHFHWD) scale, as well as the discussion of its weight determination mechanism, associated attributes and special forms. Subsequently, we present a new decision-making approach based on DGFHFHWD and TOPSIS, where the weights are processed by exponential entropy and normal distribution weighting, for the multi-attribute decision-making (MADM) issue with unknown attribute weights. Finally, a numerical example of choosing a logistics transfer station and a comparative study with other approaches based on current operators and FFS distance measurements are used to demonstrate the viability and logic of the suggested method. The findings illustrate the ability of the suggested MADM technique to completely present the decision data, enhance the accuracy of decision outcomes and prevent information loss

    Optimal Siting of Electric Vehicle Charging Stations Using Pythagorean Fuzzy VIKOR Approach

    Get PDF
    Site selection for electric vehicle charging stations (EVCSs) is the process of determining the most suitable location among alternatives for the construction of charging facilities for electric vehicles. It can be regarded as a complex multicriteria decision-making (MCDM) problem requiring consideration of multiple conflicting criteria. In the real world, it is often hard or impossible for decision makers to estimate their preferences with exact numerical values. Therefore, Pythagorean fuzzy set theory has been frequently used to handle imprecise data and vague expressions in practical decision-making problems. In this paper, a Pythagorean fuzzy VIKOR (PF-VIKOR) approach is developed for solving the EVCS site selection problems, in which the evaluations of alternatives are given as linguistic terms characterized by Pythagorean fuzzy values (PFVs). Particularly, the generalized Pythagorean fuzzy ordered weighted standardized distance (GPFOWSD) operator is proposed to calculate the utility and regret measures for ranking alternative sites. Finally, a practical example in Shanghai, China, is included to demonstrate the proposed EVCS sitting model, and the advantages are highlighted by comparing the results with other relevant methods.Peer Reviewe
    corecore