184 research outputs found

    Algebraic Structures of Neutrosophic Triplets, Neutrosophic Duplets, or Neutrosophic Multisets

    Get PDF
    Neutrosophy (1995) is a new branch of philosophy that studies triads of the form (, , ), where is an entity {i.e. element, concept, idea, theory, logical proposition, etc.}, is the opposite of , while is the neutral (or indeterminate) between them, i.e., neither nor .Based on neutrosophy, the neutrosophic triplets were founded, which have a similar form (x, neut(x), anti(x)), that satisfy several axioms, for each element x in a given set.This collective book presents original research papers by many neutrosophic researchers from around the world, that report on the state-of-the-art and recent advancements of neutrosophic triplets, neutrosophic duplets, neutrosophic multisets and their algebraic structures – that have been defined recently in 2016 but have gained interest from world researchers. Connections between classical algebraic structures and neutrosophic triplet / duplet / multiset structures are also studied. And numerous neutrosophic applications in various fields, such as: multi-criteria decision making, image segmentation, medical diagnosis, fault diagnosis, clustering data, neutrosophic probability, human resource management, strategic planning, forecasting model, multi-granulation, supplier selection problems, typhoon disaster evaluation, skin lesson detection, mining algorithm for big data analysis, etc

    New Challenges in Neutrosophic Theory and Applications

    Get PDF
    Neutrosophic theory has representatives on all continents and, therefore, it can be said to be a universal theory. On the other hand, according to the three volumes of “The Encyclopedia of Neutrosophic Researchers” (2016, 2018, 2019), plus numerous others not yet included in Encyclopedia book series, about 1200 researchers from 73 countries have applied both the neutrosophic theory and method. Neutrosophic theory was founded by Professor Florentin Smarandache in 1998; it constitutes further generalization of fuzzy and intuitionistic fuzzy theories. The key distinction between the neutrosophic set/logic and other types of sets/logics lies in the introduction of the degree of indeterminacy/neutrality (I) as an independent component in the neutrosophic set. Thus, neutrosophic theory involves the degree of membership-truth (T), the degree of indeterminacy (I), and the degree of non-membership-falsehood (F). In recent years, the field of neutrosophic set, logic, measure, probability and statistics, precalculus and calculus, etc., and their applications in multiple fields have been extended and applied in various fields, such as communication, management, and information technology. We believe that this book serves as useful guidance for learning about the current progress in neutrosophic theories. In total, 22 studies have been presented and reflect the call of the thematic vision. The contents of each study included in the volume are briefly described as follows. The first contribution, authored by Wadei Al-Omeri and Saeid Jafari, addresses the concept of generalized neutrosophic pre-closed sets and generalized neutrosophic pre-open sets in neutrosophic topological spaces. In the article “Design of Fuzzy Sampling Plan Using the Birnbaum-Saunders Distribution”, the authors Muhammad Zahir Khan, Muhammad Farid Khan, Muhammad Aslam, and Abdur Razzaque Mughal discuss the use of probability distribution function of Birnbaum–Saunders distribution as a proportion of defective items and the acceptance probability in a fuzzy environment. Further, the authors Derya Bakbak, Vakkas Uluc¸ay, and Memet S¸ahin present the “Neutrosophic Soft Expert Multiset and Their Application to Multiple Criteria Decision Making” together with several operations defined for them and their important algebraic properties. In “Neutrosophic Multigroups and Applications”, Vakkas Uluc¸ay and Memet S¸ahin propose an algebraic structure on neutrosophic multisets called neutrosophic multigroups, deriving their basic properties and giving some applications to group theory. Changxing Fan, Jun Ye, Sheng Feng, En Fan, and Keli Hu introduce the “Multi-Criteria Decision-Making Method Using Heronian Mean Operators under a Bipolar Neutrosophic Environment” and test the effectiveness of their new methods. Another decision-making study upon an everyday life issue which empowered us to organize the key objective of the industry developing is given in “Neutrosophic Cubic Einstein Hybrid Geometric Aggregation Operators with Application in Prioritization Using Multiple Attribute Decision-Making Method” written by Khaleed Alhazaymeh, Muhammad Gulistan, Majid Khan, and Seifedine Kadry

    A Historical Account of Types of Fuzzy Sets and Their Relationships

    Get PDF
    In this paper, we review the definition and basic properties of the different types of fuzzy sets that have appeared up to now in the literature. We also analyze the relationships between them and enumerate some of the applications in which they have been used

    The Encyclopedia of Neutrosophic Researchers - vol. 1

    Get PDF
    This is the first volume of the Encyclopedia of Neutrosophic Researchers, edited from materials offered by the authors who responded to the editor’s invitation. The authors are listed alphabetically. The introduction contains a short history of neutrosophics, together with links to the main papers and books. Neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics, neutrosophic measure, neutrosophic precalculus, neutrosophic calculus and so on are gaining significant attention in solving many real life problems that involve uncertainty, impreciseness, vagueness, incompleteness, inconsistent, and indeterminacy. In the past years the fields of neutrosophics have been extended and applied in various fields, such as: artificial intelligence, data mining, soft computing, decision making in incomplete / indeterminate / inconsistent information systems, image processing, computational modelling, robotics, medical diagnosis, biomedical engineering, investment problems, economic forecasting, social science, humanistic and practical achievements

    Neutrosophic Multi-Criteria Decision Making

    Get PDF
    The notion of a neutrosophic quadruple BCK/BCI-number is considered in the first article (“Neutrosophic Quadruple BCK/BCI-Algebras”, by Young Bae Jun, Seok-Zun Song, Florentin Smarandache, and Hashem Bordbar), and a neutrosophic quadruple BCK/BCI-algebra, which consists of neutrosophic quadruple BCK/BCI-numbers, is constructed. Several properties are investigated, and a (positive implicative) ideal in a neutrosophic quadruple BCK-algebra and a closed ideal in a neutrosophic quadruple BCI-algebra are studied. Given subsets A and B of a BCK/BCI-algebra, the set NQ(A,B), which consists of neutrosophic quadruple BCK/BCInumbers with a condition, is established. Conditions for the set NQ(A,B) to be a (positive implicative) ideal of a neutrosophic quadruple BCK-algebra are provided, and conditions for the set NQ(A,B) to be a (closed) ideal of a neutrosophic quadruple BCI-algebra are given. Techniques for the order of preference by similarity to ideal solution (TOPSIS) and elimination and choice translating reality (ELECTRE) are widely used methods to solve multicriteria decision-making problems. In the second research article (“Decision-Making with Bipolar Neutrosophic TOPSIS and Bipolar Neutrosophic ELECTRE-I”), Muhammad Akram, Shumaiza, and Florentin Smarandache present the bipolar neutrosophic TOPSIS method and the bipolar neutrosophic ELECTRE-I method to solve such problems. The authors use the revised closeness degree to rank the alternatives in the bipolar neutrosophic TOPSIS method. The researchers describe the bipolar neutrosophic TOPSIS method and the bipolar neutrosophic ELECTRE-I method by flow charts, also solving numerical examples by the proposed methods and providing a comparison of these methods. In the third article (“Interval Neutrosophic Sets with Applications in BCK/BCI-Algebra”, by Young Bae Jun, Seon Jeong Kim and Florentin Smarandache), the notion of (T(i,j),I(k,l),F(m,n))-interval neutrosophic subalgebra in BCK/BCI-algebra is introduced for i,j,k,l,m,n infoNumber 1,2,3,4, and properties and relations are investigated. The notion of interval neutrosophic length of an interval neutrosophic set is also introduced, and the related properties are investigated

    The legacy of 50 years of fuzzy sets: A discussion

    Get PDF
    International audienceThis note provides a brief overview of the main ideas and notions underlying fifty years of research in fuzzy set and possibility theory, two important settings introduced by L.A. Zadeh for representing sets with unsharp boundaries and uncertainty induced by granules of information expressed with words. The discussion is organized on the basis of three potential understanding of the grades of membership to a fuzzy set, depending on what the fuzzy set intends to represent: a group of elements with borderline members, a plausibility distribution, or a preference profile. It also questions the motivations for some existing generalized fuzzy sets. This note clearly reflects the shared personal views of its authors

    Algebraic structures of neutrosophic triplets, neutrosophic duplets, or neutrosophic multisets. Volume II

    Get PDF
    The topics approached in this collection of papers are: neutrosophic sets; neutrosophic logic; generalized neutrosophic set; neutrosophic rough set; multigranulation neutrosophic rough set (MNRS); neutrosophic cubic sets; triangular fuzzy neutrosophic sets (TFNSs); probabilistic single-valued (interval) neutrosophic hesitant fuzzy set; neutro-homomorphism; neutrosophic computation; quantum computation; neutrosophic association rule; data mining; big data; oracle Turing machines; recursive enumerability; oracle computation; interval number; dependent degree; possibility degree; power aggregation operators; multi-criteria group decision-making (MCGDM); expert set; soft sets; LA-semihypergroups; single valued trapezoidal neutrosophic number; inclusion relation; Q-linguistic neutrosophic variable set; vector similarity measure; fundamental neutro-homomorphism theorem; neutro-isomorphism theorem; quasi neutrosophic triplet loop; quasi neutrosophic triplet group; BE-algebra; cloud model; fuzzy measure; clustering algorithm; and many more

    Industry 4.0 project prioritization by using q-spherical fuzzy rough analytic hierarchy process

    Get PDF
    The Fourth Industrial Revolution, also known as Industry 4.0, is attracting a significant amount of attention because it has the potential to revolutionize a variety of industries by developing a production system that is fully automated and digitally integrated. The implementation of this transformation, however, calls for a significant investment of resources and may present difficulties in the process of adapting existing technology to new endeavors. Researchers have proposed integrating the Analytic Hierarchy Process (AHP) with extensions of fuzzy rough sets, such as the three-dimensional q-spherical fuzzy rough set (q-SFRS), which is effective in handling uncertainty and quantifying expert judgments, to prioritize projects related to Industry 4.0. This would allow the projects to be ranked in order of importance. In this article, a novel framework is presented that combines AHP with q-SFRS. To calculate aggregated values, the new framework uses a new formula called the q-spherical fuzzy rough arithmetic mean, when applied to a problem involving the selection of a project with five criteria for evaluation and four possible alternatives, the suggested framework produces results that are robust and competitive in comparison to those produced by other multi-criteria decision-making approaches
    • …
    corecore