512 research outputs found

    Managing consensus by multi-stage optimization models with linguistic preference orderings and double hierarchy linguistic preferences

    Get PDF
    Preference ordering structures are useful and popular tools to represent experts’ preferences in the decision making process. In the existing preference orderings, they lack the research on the precise relationship between any two adjacent alternatives in the preference orderings, and the decision making methods are unreasonable. To overcome these issues, this paper establishes a novel concept of linguistic preference ordering (LPO) in which the ordering of alternatives and the relationships between two adjacent alternatives should be fused well, and develops two transformation models to transform each LPO into the corresponding double hierarchy linguistic preference relation with complete consistency. Additionally, to fully respect the experts’ expression habits and provide more refined solutions to experts, this paper establishes a multi-stage consensus optimization model by considering the suggested preferences represented in both the continuous scale and the discrete scale, and develops a multi-stage interactive consensus reaching algorithm to deal with multi-expert decision making problem with LPOs. Furthermore, some numerical examples are presented to illustrate the developed methods and models. Finally, some comparative analyses between the proposed methods and models and some existing methods have been made to show the advantages of the proposed methods and models. First published online 24 February 202

    Algebraic Structures of Neutrosophic Triplets, Neutrosophic Duplets, or Neutrosophic Multisets

    Get PDF
    Neutrosophy (1995) is a new branch of philosophy that studies triads of the form (, , ), where is an entity {i.e. element, concept, idea, theory, logical proposition, etc.}, is the opposite of , while is the neutral (or indeterminate) between them, i.e., neither nor .Based on neutrosophy, the neutrosophic triplets were founded, which have a similar form (x, neut(x), anti(x)), that satisfy several axioms, for each element x in a given set.This collective book presents original research papers by many neutrosophic researchers from around the world, that report on the state-of-the-art and recent advancements of neutrosophic triplets, neutrosophic duplets, neutrosophic multisets and their algebraic structures – that have been defined recently in 2016 but have gained interest from world researchers. Connections between classical algebraic structures and neutrosophic triplet / duplet / multiset structures are also studied. And numerous neutrosophic applications in various fields, such as: multi-criteria decision making, image segmentation, medical diagnosis, fault diagnosis, clustering data, neutrosophic probability, human resource management, strategic planning, forecasting model, multi-granulation, supplier selection problems, typhoon disaster evaluation, skin lesson detection, mining algorithm for big data analysis, etc

    Multi-Objective and Multi-Attribute Optimisation for Sustainable Development Decision Aiding

    Get PDF
    Optimization is considered as a decision-making process for getting the most out of available resources for the best attainable results. Many real-world problems are multi-objective or multi-attribute problems that naturally involve several competing objectives that need to be optimized simultaneously, while respecting some constraints or involving selection among feasible discrete alternatives. In this Reprint of the Special Issue, 19 research papers co-authored by 88 researchers from 14 different countries explore aspects of multi-objective or multi-attribute modeling and optimization in crisp or uncertain environments by suggesting multiple-attribute decision-making (MADM) and multi-objective decision-making (MODM) approaches. The papers elaborate upon the approaches of state-of-the-art case studies in selected areas of applications related to sustainable development decision aiding in engineering and management, including construction, transportation, infrastructure development, production, and organization management

    Uncertain Multi-Criteria Optimization Problems

    Get PDF
    Most real-world search and optimization problems naturally involve multiple criteria as objectives. Generally, symmetry, asymmetry, and anti-symmetry are basic characteristics of binary relationships used when modeling optimization problems. Moreover, the notion of symmetry has appeared in many articles about uncertainty theories that are employed in multi-criteria problems. Different solutions may produce trade-offs (conflicting scenarios) among different objectives. A better solution with respect to one objective may compromise other objectives. There are various factors that need to be considered to address the problems in multidisciplinary research, which is critical for the overall sustainability of human development and activity. In this regard, in recent decades, decision-making theory has been the subject of intense research activities due to its wide applications in different areas. The decision-making theory approach has become an important means to provide real-time solutions to uncertainty problems. Theories such as probability theory, fuzzy set theory, type-2 fuzzy set theory, rough set, and uncertainty theory, available in the existing literature, deal with such uncertainties. Nevertheless, the uncertain multi-criteria characteristics in such problems have not yet been explored in depth, and there is much left to be achieved in this direction. Hence, different mathematical models of real-life multi-criteria optimization problems can be developed in various uncertain frameworks with special emphasis on optimization problems

    A patient agent controlled customized blockchain based framework for internet of things

    Get PDF
    Although Blockchain implementations have emerged as revolutionary technologies for various industrial applications including cryptocurrencies, they have not been widely deployed to store data streaming from sensors to remote servers in architectures known as Internet of Things. New Blockchain for the Internet of Things models promise secure solutions for eHealth, smart cities, and other applications. These models pave the way for continuous monitoring of patient’s physiological signs with wearable sensors to augment traditional medical practice without recourse to storing data with a trusted authority. However, existing Blockchain algorithms cannot accommodate the huge volumes, security, and privacy requirements of health data. In this thesis, our first contribution is an End-to-End secure eHealth architecture that introduces an intelligent Patient Centric Agent. The Patient Centric Agent executing on dedicated hardware manages the storage and access of streams of sensors generated health data, into a customized Blockchain and other less secure repositories. As IoT devices cannot host Blockchain technology due to their limited memory, power, and computational resources, the Patient Centric Agent coordinates and communicates with a private customized Blockchain on behalf of the wearable devices. While the adoption of a Patient Centric Agent offers solutions for addressing continuous monitoring of patients’ health, dealing with storage, data privacy and network security issues, the architecture is vulnerable to Denial of Services(DoS) and single point of failure attacks. To address this issue, we advance a second contribution; a decentralised eHealth system in which the Patient Centric Agent is replicated at three levels: Sensing Layer, NEAR Processing Layer and FAR Processing Layer. The functionalities of the Patient Centric Agent are customized to manage the tasks of the three levels. Simulations confirm protection of the architecture against DoS attacks. Few patients require all their health data to be stored in Blockchain repositories but instead need to select an appropriate storage medium for each chunk of data by matching their personal needs and preferences with features of candidate storage mediums. Motivated by this context, we advance third contribution; a recommendation model for health data storage that can accommodate patient preferences and make storage decisions rapidly, in real-time, even with streamed data. The mapping between health data features and characteristics of each repository is learned using machine learning. The Blockchain’s capacity to make transactions and store records without central oversight enables its application for IoT networks outside health such as underwater IoT networks where the unattended nature of the nodes threatens their security and privacy. However, underwater IoT differs from ground IoT as acoustics signals are the communication media leading to high propagation delays, high error rates exacerbated by turbulent water currents. Our fourth contribution is a customized Blockchain leveraged framework with the model of Patient-Centric Agent renamed as Smart Agent for securely monitoring underwater IoT. Finally, the smart Agent has been investigated in developing an IoT smart home or cities monitoring framework. The key algorithms underpinning to each contribution have been implemented and analysed using simulators.Doctor of Philosoph

    Semantic discovery and reuse of business process patterns

    Get PDF
    Patterns currently play an important role in modern information systems (IS) development and their use has mainly been restricted to the design and implementation phases of the development lifecycle. Given the increasing significance of business modelling in IS development, patterns have the potential of providing a viable solution for promoting reusability of recurrent generalized models in the very early stages of development. As a statement of research-in-progress this paper focuses on business process patterns and proposes an initial methodological framework for the discovery and reuse of business process patterns within the IS development lifecycle. The framework borrows ideas from the domain engineering literature and proposes the use of semantics to drive both the discovery of patterns as well as their reuse

    Data quality issues in electronic health records for large-scale databases

    Get PDF
    Data Quality (DQ) in Electronic Health Records (EHRs) is one of the core functions that play a decisive role to improve the healthcare service quality. The DQ issues in EHRs are a noticeable trend to improve the introduction of an adaptive framework for interoperability and standards in Large-Scale Databases (LSDB) management systems. Therefore, large data communications are challenging in the traditional approaches to satisfy the needs of the consumers, as data is often not capture directly into the Database Management Systems (DBMS) in a seasonably enough fashion to enable their subsequent uses. In addition, large data plays a vital role in containing plenty of treasures for all the fields in the DBMS. EHRs technology provides portfolio management systems that allow HealthCare Organisations (HCOs) to deliver a higher quality of care to their patients than that which is possible with paper-based records. EHRs are in high demand for HCOs to run their daily services as increasing numbers of huge datasets occur every day. Efficient EHR systems reduce the data redundancy as well as the system application failure and increase the possibility to draw all necessary reports. However, one of the main challenges in developing efficient EHR systems is the inherent difficulty to coherently manage data from diverse heterogeneous sources. It is practically challenging to integrate diverse data into a global schema, which satisfies the need of users. The efficient management of EHR systems using an existing DBMS present challenges because of incompatibility and sometimes inconsistency of data structures. As a result, no common methodological approach is currently in existence to effectively solve every data integration problem. The challenges of the DQ issue raised the need to find an efficient way to integrate large EHRs from diverse heterogeneous sources. To handle and align a large dataset efficiently, the hybrid algorithm method with the logical combination of Fuzzy-Ontology along with a large-scale EHRs analysis platform has shown the results in term of improved accuracy. This study investigated and addressed the raised DQ issues to interventions to overcome these barriers and challenges, including the provision of EHRs as they pertain to DQ and has combined features to search, extract, filter, clean and integrate data to ensure that users can coherently create new consistent data sets. The study researched the design of a hybrid method based on Fuzzy-Ontology with performed mathematical simulations based on the Markov Chain Probability Model. The similarity measurement based on dynamic Hungarian algorithm was followed by the Design Science Research (DSR) methodology, which will increase the quality of service over HCOs in adaptive frameworks

    Enhancing Managerial Decision-Making Through Multicriteria Modeling

    Get PDF
    The monograph constitutes a crowning of research led in the field of particular methodology of management science, in the field of enhancing managerial decision-making sub-discipline in frames of the practical stream of the management science discipline. The monograph is a development of the research project in which the elaboration of a scientific method for the enhancement of managerial decision-making processes through the Modular Multicriteria Managerial Decision-Making Model (MMUMADEMM) has been proposed
    • …
    corecore