175 research outputs found

    Lightweight and Efficient Neural Natural Language Processing with Quaternion Networks

    Full text link
    Many state-of-the-art neural models for NLP are heavily parameterized and thus memory inefficient. This paper proposes a series of lightweight and memory efficient neural architectures for a potpourri of natural language processing (NLP) tasks. To this end, our models exploit computation using Quaternion algebra and hypercomplex spaces, enabling not only expressive inter-component interactions but also significantly (75%75\%) reduced parameter size due to lesser degrees of freedom in the Hamilton product. We propose Quaternion variants of models, giving rise to new architectures such as the Quaternion attention Model and Quaternion Transformer. Extensive experiments on a battery of NLP tasks demonstrates the utility of proposed Quaternion-inspired models, enabling up to 75%75\% reduction in parameter size without significant loss in performance.Comment: ACL 201

    Attention in Natural Language Processing

    Get PDF
    Attention is an increasingly popular mechanism used in a wide range of neural architectures. The mechanism itself has been realized in a variety of formats. However, because of the fast-paced advances in this domain, a systematic overview of attention is still missing. In this article, we define a unified model for attention architectures in natural language processing, with a focus on those designed to work with vector representations of the textual data. We propose a taxonomy of attention models according to four dimensions: the representation of the input, the compatibility function, the distribution function, and the multiplicity of the input and/or output. We present the examples of how prior information can be exploited in attention models and discuss ongoing research efforts and open challenges in the area, providing the first extensive categorization of the vast body of literature in this exciting domain

    Entity-Assisted Language Models for Identifying Check-worthy Sentences

    Full text link
    We propose a new uniform framework for text classification and ranking that can automate the process of identifying check-worthy sentences in political debates and speech transcripts. Our framework combines the semantic analysis of the sentences, with additional entity embeddings obtained through the identified entities within the sentences. In particular, we analyse the semantic meaning of each sentence using state-of-the-art neural language models such as BERT, ALBERT, and RoBERTa, while embeddings for entities are obtained from knowledge graph (KG) embedding models. Specifically, we instantiate our framework using five different language models, entity embeddings obtained from six different KG embedding models, as well as two combination methods leading to several Entity-Assisted neural language models. We extensively evaluate the effectiveness of our framework using two publicly available datasets from the CLEF' 2019 & 2020 CheckThat! Labs. Our results show that the neural language models significantly outperform traditional TF.IDF and LSTM methods. In addition, we show that the ALBERT model is consistently the most effective model among all the tested neural language models. Our entity embeddings significantly outperform other existing approaches from the literature that are based on similarity and relatedness scores between the entities in a sentence, when used alongside a KG embedding.Comment: 22 pages, 15 tables, 3 figure

    Neural networks for text matching

    Get PDF
    • …
    corecore