24 research outputs found

    Interpolating sequences of 3D-data with C2 quintic PH B-spline curves

    Get PDF
    The goal of this paper is to present an effective method for interpolating sequences of 3D-data by means of C2 quintic Pythagorean-Hodograph (PH) B-spline curves. The strategy we propose works successfully with both open and closed sequences of 3D-points. It relies on calculations that are mostly explicit thanks to the fact that the interpolation conditions can explicitly be solved in dependence of the coefficients of the pre-image PH B-spline curve. In order to select a more suitable interpolant a functional is minimized in two remaining free coefficients of the pre-image PH B-spline curve and some angular parameters

    Construction of planar quintic Pythagorean-hodograph curves by control-polygon constraints

    Get PDF
    In the construction and analysis of a planar Pythagorean–hodograph (PH) quintic curve r(t), t∈[0,1] using the complex representation, it is convenient to invoke a translation/rotation/scaling transformation so r(t) is in canonical form with r(0)=0, r(1)=1 and possesses just two complex degrees of freedom. By choosing two of the five control–polygon legs of a quintic PH curve as these free complex parameters, the remaining three control–polygon legs can be expressed in terms of them and the roots of a quadratic or quartic equation. Consequently, depending on the chosen two control–polygon legs, there exist either two or four distinct quintic PH curves that are consistent with them. A comprehensive analysis of all possible pairs of chosen control polygon legs is developed, and examples are provided to illustrate this control–polygon paradigm for the construction of planar quintic PH curves

    Construction and evaluation of PH curves in exponential-polynomial spaces

    Full text link
    In the past few decades polynomial curves with Pythagorean Hodograph (for short PH curves) have received considerable attention due to their usefulness in various CAD/CAM areas, manufacturing, numerical control machining and robotics. This work deals with classes of PH curves built-upon exponential-polynomial spaces (for short EPH curves). In particular, for the two most frequently encountered exponential-polynomial spaces, we first provide necessary and sufficient conditions to be satisfied by the control polygon of the B\'{e}zier-like curve in order to fulfill the PH property. Then, for such EPH curves, fundamental characteristics like parametric speed or cumulative and total arc length are discussed to show the interesting analogies with their well-known polynomial counterparts. Differences and advantages with respect to ordinary PH curves become commendable when discussing the solutions to application problems like the interpolation of first-order Hermite data. Finally, a new evaluation algorithm for EPH curves is proposed and shown to compare favorably with the celebrated de Casteljau-like algorithm and two recently proposed methods: Wo\'zny and Chudy's algorithm and the dynamic evaluation procedure by Yang and Hong

    A new class of trigonometric B-Spline Curves

    Get PDF
    We construct one-frequency trigonometric spline curves with a de Boor-like algorithm for evaluation and analyze their shape-preserving properties. The convergence to quadratic B-spline curves is also analyzed. A fundamental tool is the concept of the normalized B-basis, which has optimal shape-preserving properties and good symmetric properties

    Hermite Interpolation Using Möbius Transformations of Planar Pythagorean-Hodograph Cubics

    Get PDF
    We present an algorithm for C1 Hermite interpolation using Möbius transformations of planar polynomial Pythagoreanhodograph (PH) cubics. In general, with PH cubics, we cannot solve C1 Hermite interpolation problems, since their lack of parameters makes the problems overdetermined. In this paper, we show that, for each Möbius transformation, we can introduce an extra parameter determined by the transformation, with which we can reduce them to the problems determining PH cubics in the complex plane ℂ. Möbius transformations preserve the PH property of PH curves and are biholomorphic. Thus the interpolants obtained by this algorithm are also PH and preserve the topology of PH cubics. We present a condition to be met by a Hermite dataset, in order for the corresponding interpolant to be simple or to be a loop. We demonstrate the improved stability of these new interpolants compared with PH quintics
    corecore