38 research outputs found

    Hereditary History Preserving Bisimilarity is Undecidable

    Get PDF
    We show undecidability of hereditary history preserving bisimilarityfor finite asynchronous transition systems by a reduction from the haltingproblem of deterministic 2-counter machines. To make the proof moretransparent we introduce an intermediate problem of checking dominobisimilarity for origin constrained tiling systems. First we reduce thehalting problem of deterministic 2-counter machines to origin constraineddomino bisimilarity. Then we show how to model domino bisimulations ashereditary history preserving bisimulations for finite asynchronous transitionssystems. We also argue that the undecidability result holds forfinite 1-safe Petri nets, which can be seen as a proper subclass of finiteasynchronous transition systems

    (Un)Decidability for History Preserving True Concurrent Logics

    Get PDF
    We investigate the satisfiability problem for a logic for true concurrency, whose formulae predicate about events in computations and their causal (in)dependencies. Variants of such logics have been studied, with different expressiveness, corresponding to a number of true concurrent behavioural equivalences. Here we focus on a mu-calculus style logic that represents the counterpart of history-preserving (hp-)bisimilarity, a typical equivalence in the true concurrent spectrum of bisimilarities. It is known that one can decide whether or not two 1-safe Petri nets (and in general finite asynchronous transition systems) are hp-bisimilar. Moreover, for the logic that captures hp-bisimilarity the model-checking problem is decidable with respect to prime event structures satisfying suitable regularity conditions. To the best of our knowledge, the problem of satisfiability has been scarcely investigated in the realm of true concurrent logics. We show that satisfiability for the logic for hp-bisimilarity is undecidable via a reduction from domino tilings. The fragment of the logic without fixpoints, instead, turns out to be decidable. We consider these results a first step towards a more complete investigation of the satisfiability problem for true concurrent logics, which we believe to have notable solvable cases

    Decidability and coincidence of equivalences for concurrency

    Get PDF
    There are two fundamental problems concerning equivalence relations in con-currency. One is: for which system classes is a given equivalence decidable? The second is: when do two equivalences coincide? Two well-known equivalences are history preserving bisimilarity (hpb) and hereditary history preserving bisimi-larity (hhpb). These are both ‘independence ’ equivalences: they reflect causal dependencies between events. Hhpb is obtained from hpb by adding a ‘back-tracking ’ requirement. This seemingly small change makes hhpb computationally far harder: hpb is well-known to be decidable for finite-state systems, whereas the decidability of hhpb has been a renowned open problem for several years; only recently it has been shown undecidable. The main aim of this thesis is to gain insights into the decidability problem for hhpb, and to analyse when it coincides with hpb; less technically, we might say, to analyse the power of the interplay between concurrency, causality, and conflict. We first examine the backtracking condition, and see that it has two dimen

    History-Preserving Bisimilarity for Higher-Dimensional Automata via Open Maps

    Get PDF
    We show that history-preserving bisimilarity for higher-dimensional automata has a simple characterization directly in terms of higher-dimensional transitions. This implies that it is decidable for finite higher-dimensional automata. To arrive at our characterization, we apply the open-maps framework of Joyal, Nielsen and Winskel in the category of unfoldings of precubical sets.Comment: Minor updates in accordance with reviewer comments. Submitted to MFPS 201

    A Logic for True Concurrency

    Full text link
    We propose a logic for true concurrency whose formulae predicate about events in computations and their causal dependencies. The induced logical equivalence is hereditary history preserving bisimilarity, and fragments of the logic can be identified which correspond to other true concurrent behavioural equivalences in the literature: step, pomset and history preserving bisimilarity. Standard Hennessy-Milner logic, and thus (interleaving) bisimilarity, is also recovered as a fragment. We also propose an extension of the logic with fixpoint operators, thus allowing to describe causal and concurrency properties of infinite computations. We believe that this work contributes to a rational presentation of the true concurrent spectrum and to a deeper understanding of the relations between the involved behavioural equivalences.Comment: 31 pages, a preliminary version appeared in CONCUR 201

    Minimisation of event structures

    Get PDF
    Event structures are fundamental models in concurrency theory, providing a representation of events in computation and of their relations, notably concurrency, conflict and causality. In this paper we present a theory of minimisation for event structures. Working in a class of event structures that generalises many stable event structure models in the literature, (e.g., prime, asymmetric, flow and bundle event structures) we study a notion of behaviour-preserving quotient, taking hereditary history preserving bisimilarity as a reference behavioural equivalence. We show that for any event structure a uniquely determined minimal quotient always exists. We observe that each event structure can be seen as the quotient of a prime event structure, and that quotients of general event structures arise from quotients of (suitably defined) corresponding prime event structures. This gives a special relevance to quotients in the class of prime event structures, which are then studied in detail, providing a characterisation and showing that also prime event structures always admit a unique minimal quotient

    A Note on Spector’s Quantifier-Free Rule of Extensionality

    Get PDF
    In this note we show that the so-called weakly extensional arithmeticin all finite types, which is based on a quantifier-free rule ofextensionality due to C. Spector and which is of significance in thecontext of G¨odel's functional interpretation, does not satisfy the deductiontheorem for additional axioms. This holds already for PI^0_1-axioms. Previously, only the failure of the stronger deduction theoremfor deductions from (possibly open) assumptions (with parameterskept fixed) was known

    Automata for true concurrency properties

    Get PDF
    We present an automata-theoretic framework for the model checking of true concurrency properties. These are specified in a fixpoint logic, corresponding to history-preserving bisimilarity, capable of describing events in computations and their dependencies. The models of the logic are event structures or any formalism which can be given a causal semantics, like Petri nets. Given a formula and an event structure satisfying suitable regularity conditions we show how to construct a parity tree automaton whose language is non-empty if and only if the event structure satisfies the formula. The automaton, due to the nature of event structure models, is usually infinite. We discuss how it can be quotiented to an equivalent finite automaton, where emptiness can be checked effectively. In order to show the applicability of the approach, we discuss how it instantiates to finite safe Petri nets. As a proof of concept we provide a model checking tool implementing the technique
    corecore