632 research outputs found

    Herding as a Learning System with Edge-of-Chaos Dynamics

    Full text link
    Herding defines a deterministic dynamical system at the edge of chaos. It generates a sequence of model states and parameters by alternating parameter perturbations with state maximizations, where the sequence of states can be interpreted as "samples" from an associated MRF model. Herding differs from maximum likelihood estimation in that the sequence of parameters does not converge to a fixed point and differs from an MCMC posterior sampling approach in that the sequence of states is generated deterministically. Herding may be interpreted as a"perturb and map" method where the parameter perturbations are generated using a deterministic nonlinear dynamical system rather than randomly from a Gumbel distribution. This chapter studies the distinct statistical characteristics of the herding algorithm and shows that the fast convergence rate of the controlled moments may be attributed to edge of chaos dynamics. The herding algorithm can also be generalized to models with latent variables and to a discriminative learning setting. The perceptron cycling theorem ensures that the fast moment matching property is preserved in the more general framework

    On the Equivalence between Herding and Conditional Gradient Algorithms

    Get PDF
    We show that the herding procedure of Welling (2009) takes exactly the form of a standard convex optimization algorithm--namely a conditional gradient algorithm minimizing a quadratic moment discrepancy. This link enables us to invoke convergence results from convex optimization and to consider faster alternatives for the task of approximating integrals in a reproducing kernel Hilbert space. We study the behavior of the different variants through numerical simulations. The experiments indicate that while we can improve over herding on the task of approximating integrals, the original herding algorithm tends to approach more often the maximum entropy distribution, shedding more light on the learning bias behind herding

    iCaRL: Incremental Classifier and Representation Learning

    Full text link
    A major open problem on the road to artificial intelligence is the development of incrementally learning systems that learn about more and more concepts over time from a stream of data. In this work, we introduce a new training strategy, iCaRL, that allows learning in such a class-incremental way: only the training data for a small number of classes has to be present at the same time and new classes can be added progressively. iCaRL learns strong classifiers and a data representation simultaneously. This distinguishes it from earlier works that were fundamentally limited to fixed data representations and therefore incompatible with deep learning architectures. We show by experiments on CIFAR-100 and ImageNet ILSVRC 2012 data that iCaRL can learn many classes incrementally over a long period of time where other strategies quickly fail.Comment: Accepted paper at CVPR 201
    • …
    corecore