138 research outputs found

    Effectiveness of Stent in the Treatment of Renal Artery Aneurysm using FSI Simulation

    Get PDF
    Renal artery aneurysm (RAA) is a condition that affects approximately 0.1% of the general population. The rate of incidence is minimal compared to other type of aneurysm but a high number of ruptures have been reported in pregnancy, especially at the third trimester. The concerning issue is that the maternal mortality rate stretches up to 50% and the fetal mortality rate approaching 85% with a universal loss of the affected kidney. This study aimed at investigating the effectiveness of stent in treatment of RAA using the fluid-structure interaction (FSI) approach. The flow pattern, wall shear stress (WSS), deformation and von Mises stress experienced are compared between RAA model without stent and with Abbott RX Herculink stent. A simple PIV experiment, observing the flow profile was conducted as a validation steps in ensuring the simulation results are reliable and accurate. The findings show that the simulation and PIV data are in good agreement in terms of the flow profile. The presence of stent managed to reduce the blood flow maximum velocity down to 46% and minimized the circulation of blood in the aneurysm dome. As for the WSS, the used of stent succeeded in decreasing the WSS experienced by the wall of aneurysm by 71% and below the baseline level of WSS that could induced rupture. The deformation of RAA and maximum von Mises stress reduced by 58% and 73% respectively when stent is used. In addition, the maximum von Mises stress after the stent placement is lower than the threshold value for the ultimate tensile strength of the tissue. This study concluded that the stent placement is effective in reducing the risk of aneurysm rupture in renal artery it can be one of the baseline for the further study regarding the RAA

    Role of Interventional Treatment of Thoracic Aorta

    Get PDF
    An aging western and oriental population coupled with breakthrough advances in modern diagnostic imaging modalities has evoked renewed interest in the hitherto underdiagnosed acute and chronic diseases of the aorta, which also include aortic aneurysm and aortic dissection. Although classical surgical strategies still dominate the clinical management of acute and chronic pathologies of the ascending aorta and the proximal arch region, the emergence of novel endovascular concepts has offered an interesting therapy alternative for the treatment of descending aortic pathology in suitable patients and is highly likely to evolve as the primary treatment strategy in majority of the cases. Moreover, the use of hybrid approaches combining surgical head-vessel debranching and interventional stent-graft implantation in an attempt to improve clinical outcome in aortic arch pathologies has helped avoid the high risk of open arch repair or complete replacement. Notwithstanding these recent advancements, the complex nature of the underlying vascular disease still dictates that the proposed management of every diagnosed patient is discussed in a team constituting cardiologists, cardiac surgeons, anesthesiologists, and radiologists, with the conceptualization of individualized therapeutic strategies and conducted in a center with significant surgical and endovascular experience

    Evaluating the haemodynamic performance of endografts for complex aortic arch repair

    Get PDF
    Thoracic endovascular aortic repair (TEVAR) of aortic aneurysms and dissections involving the arch has evolved over the last two decades. Compared to conventional surgical methods, endovascular repair offers a less invasive treatment option with lower risk and faster recovery. Endografts used in TEVAR vary in design depending on the procedure and application. Novel endografts (e.g., branched stent-graft) were developed to ensure perfusion of blood to the supra-aortic vessels, but their haemodynamic performance and long-term durability have not been adequately studied. This review focuses on the use of computational modelling to study haemodynamics in commercially available endografts designed for complex aortic arch repair. First, we summarise the currently adopted workflow for computational fluid dynamics (CFD) modelling, including geometry reconstruction, boundary conditions, flow models, and haemodynamic metrics of interest. This is followed by a review of recently (2010-present) published CFD studies on complex aortic arch repair, using both idealized and patient-specific models. Finally, we introduce some of the promising techniques that can be potentially applied to predict post-operative outcomes

    Virtuelle endovaskuläre Versorgung von abdominalen Aortenaneurysmen

    Get PDF
    This thesis is focused on computational methods that predict the outcome of endovascular repair of abdominal aortic aneurysms. Novelties include improvements of the aneurysm model, the stent-graft model as well as the in-silico stent-graft placement methodology. The newly developed methods are applied to patient-specific cases and are validated against real-world postinterventional data. Further, directions for using the in-silico model of endovascular aneurysm repair as personalized preinterventional planning tool in clinical practice are provided.Die vorliegende Arbeit beschäftigt sich mit numerischen Methoden um den Ausgang einer endovaskulären Versorgung von abdominalen Aortenaneurysmen vorherzusagen. Neuheiten umfassen Verbesserungen des Aneurysmenmodells, des Stentgraftmodells sowie der virtuellen Platzierungsmethode des Stentgrafts. Die neu entwickelten Methoden werden auf patientenspezifische Fälle angewandt und werden mit realen postoperativen Daten validiert. Weiterhin werden klinische Anwendungen des Modells der endovaskulären Aneurysmenversorgung als personalisiertes präoperatives Planungswerkzeug präsentiert

    Virtuelle endovaskuläre Versorgung von abdominalen Aortenaneurysmen

    Get PDF
    This thesis is focused on computational methods that predict the outcome of endovascular repair of abdominal aortic aneurysms. Novelties include improvements of the aneurysm model, the stent-graft model as well as the in-silico stent-graft placement methodology. The newly developed methods are applied to patient-specific cases and are validated against real-world postinterventional data. Further, directions for using the in-silico model of endovascular aneurysm repair as personalized preinterventional planning tool in clinical practice are provided.Die vorliegende Arbeit beschäftigt sich mit numerischen Methoden um den Ausgang einer endovaskulären Versorgung von abdominalen Aortenaneurysmen vorherzusagen. Neuheiten umfassen Verbesserungen des Aneurysmenmodells, des Stentgraftmodells sowie der virtuellen Platzierungsmethode des Stentgrafts. Die neu entwickelten Methoden werden auf patientenspezifische Fälle angewandt und werden mit realen postoperativen Daten validiert. Weiterhin werden klinische Anwendungen des Modells der endovaskulären Aneurysmenversorgung als personalisiertes präoperatives Planungswerkzeug präsentiert

    Aneurysmal Disease of the Thoracic and Abdominal Aorta

    Get PDF
    The first successful open surgical repair of an abdominal aortic aneurysm was in 1951 by Dubost and represented a tremendous milestone in the care of this challenging disease. The introduction of endovascular repair in 1991 by Parodi furthered the care of these patients by allowing for lower morbidity and mortality rates and also, enabling surgeons to extend surgical treatment to patients traditionally deemed too high of a surgical risk. This new book on Aortic Disease covers many interesting and vital topics necessary for both the practicing surgeon as well as a student of vascular disease. The book starts with background information on the evolution of aortic management from traditional open surgical repair to modern endovascular therapies. There is also a chapter covering the data supporting current treatment modalities and how these data have supported modern management. Also, the use of endovascular means for care of the challenging situation of ruptured aneurysms is discussed. In addition to management of abdominal aneurysm, there is a chapter on treatment of aneurysms of the ascending aorta. Along with surgical treatment, one must also understand the molecular basis for how blood vessels remodel and thus, the role of cathepsins in aortic disease is elucidated. Lastly, chapters discussing the perioperative management of radiation exposure and ultrasound-guided nerve blocks as well as the need for high-quality postoperative nutrition will lend well to a full understanding of how to management patients from presentation to hospital discharge. We hope you enjoy this book, its variety of topics, and gain a fuller knowledge of Aneurysmal Disease of the Thoracic and Abdominal Aorta

    Computational analysis of the hemodynamic performance of novel endovascular and surgical procedures for complex aortic diseases

    Get PDF
    Novel branched stent-grafts (BSG) have been developed for endovascular repair of complex thoracic aortic aneurysms (TAA) involving the aortic arch or thoracoabdominal aorta, but their haemodynamic performance has not been adequately studied. In addition, surgical replacement of the ascending aorta with a Dacron graft remains the gold standard for type A aortic dissection (TAAD), although 12% of patients are at risk of aortic rupture due to further dilatation of the residual dissected aorta. The underlying mechanisms for progressive aortic dilatation following TAAD repair are poorly understood, but haemodynamic and biomechanical factors are believed to play an important role. Therefore, the present study aims to provide more insights into the haemodynamics in novel BSGs developed for treating complex aortic diseases, and a comprehensive evaluation of flow and biomechanical conditions in post-surgery TAADs by means of state-of-the-art computational methods. The first part of this thesis focuses on evaluating the haemodynamic performance of novel BSG designs, including thoracoabdominal branch endoprosthesis (TAMBE) and dual-branched thoracic endograft. Haemodynamics in idealised and patient-specific BSG models has been analysed by examining side branch outflow waveforms, wall shear stress related indices, and displacement forces, in order to assess their long-term durability. The numerical results show that all the stent-graft models examined in this study are capable of providing normal blood perfusion to side vessels, and are at low risk of in-stent thrombosis and device migration. Furthermore, it has been shown that geometric variations in TAMBE do not affect the key haemodynamic results, indicating its potential suitability for a variety of visceral artery anatomies. Comparisons of dual-branched thoracic endograft models with different inner tunnel diameters suggest that BSGs with larger inner tunnel diameters than the respective vessels would be preferred. Comparisons between the pre- and post-intervention models show that insertion of a dual-branched stent-graft significantly alters the flow pattern in the aortic arch, some of which may have a detrimental effect in the long term, thus requiring follow-up studies. The second part of the thesis provides a comprehensive analysis of the haemodynamic and biomechanical conditions in surgically repaired TAAD. Geometric and haemodynamic parameters have been analyzed and compared between the group of patients with stable aortic diameter and another group with progressive aortic dilatation. The number of re-entry tears (6±5 vs 2±1;P= 0.02) and luminal pressure difference (1.3 ±1 vs 11.7 ±14.6 mmHg;P= 0.001) have been identified as potential predictors of progressive aortic dilatation in TAAD patients following surgical repair. This is an important finding and can potentially assist clinicians to make the most appropriate choice or surgical plan for individual patients. Based on the finite element analysis of four patient-specific cases, there are no clear differences in biomechanical parameters between the stable and unstable groups. Furthermore, a preliminary fluid-solid interaction (FSI) simulation performed on a single TAAD model has demonstrated the important influence of wall compliance on pressures in the true and false lumen. Compared to a rigid wall model, the FSI simulation results show a reduction in systolic pressure by up to 10 mmHg and a slight increase in diastolic pressure. However, pressures in the true and false lumen are affected in the same way, so that the luminal pressure difference remains the same between the rigid and FSI models.Open Acces
    • …
    corecore