112 research outputs found

    Enhancement of Vehicular Visible Light Communication Using Spherical Detector and Custom Lens Combinations

    Get PDF
    Vehicular Visible light communication (VLC) technology has recently attracted much interest from researchers and scientists. This technology enables connectivity between vehicles and infrastructures along the road by using vehicles’ headlights and taillights as wireless transmitters. The reliability of vehicle-to-vehicle (V2V) VLC systems is affected by several factors, such as car mobility, optics system design, and visibility conditions, where the first two have the most impact on the VLC system performance. This paper, therefore, focuses on the relative positions of the cars and the design of the optics, especially on the receiving end, which has been proposed with the use of a polar detector instead of the rectangular detectors commonly used in the literature. We investigate the achievable gain compared to the conventional detector for different vehicle locations, utilizing a professional optical system design and ray tracing approach. Then, to improve the performance, we introduce the utilization of an imaging receiver by integrating the polar detector with different optical commercial lens combinations, such as Fresnel and Aspherical lenses. To further improve the V2V system performance, we propose a novel optical lens combination design by integrating double-convex lens with half-Plano-concave lens, which allows the correction of more optical aberrations, such as chromatic and spherical aberration. Utilizing the non-sequential ray tracing tools, we designed these VLC systems and perform a realistic channel modeling study considering the typical 3D CAD models of vehicles and roads as well as the possibility of horizontal and vertical movement between the vehicles. Based on the channel impulse responses (CIRs) obtained from the ray tracing simulations, we analyzed the performance of V2V VLC systems with all lens combinations at different vehicle positions on the road. We further investigated the impact of different system parameters on the overall V2V system performance, such as receiver diameter and bandwidth. The obtained results demonstrated that with a carefully chosen system and lens parameters, the proposed system design of lens combination provides an enhancement of up to 7 dB in total received power compared to the case without a lens. Our results also revealed that the proposed system design outperforms the benchmark ones for all lateral displacements and longitudinal distances

    Detection and Localisation Using Light

    Get PDF
    Visible light communication (VLC) systems have become promising candidates to complement conventional radio frequency (RF) systems due to the increasingly saturated RF spectrum and the potentially high data rates that can be achieved by VLC systems. Furthermore, people detection and counting in an indoor environment has become an emerging and attractive area in the past decade. Many techniques and systems have been developed for counting in public places such as subways, bus stations and supermarkets. The outcome of these techniques can be used for public security, resource allocation and marketing decisions. This thesis presents the first indoor light-based detection and localisation system that builds on concepts from radio detection and ranging (radar) making use of the expected growth in the use and adoption of visible light communication (VLC), which can provide the infrastructure for our light detection and localisation (LiDAL) system. Our system enables active detection, counting and localisation of people, in addition to being fully compatible with existing VLC systems. In order to detect human (targets), LiDAL uses the visible light spectrum. It sends pulses using a VLC transmitter and analyses the reflected signal collected by an optical receiver. Although we examine the use of the visible spectrum here, LiDAL can be used in the infrared spectrum and other parts of the light spectrum. We introduce LiDAL with different transmitter-receiver configurations and optimum detectors considering the fluctuation of the received reflected signal from the target in the presence of Gaussian noise. We design an efficient multiple input multiple output (MIMO) LiDAL system with wide field of view (FOV) single photodetector receiver, and also design a multiple input single output (MISO) LiDAL system with an imaging receiver to eliminate ambiguity in target detection and localisation. We develop models for the human body and its reflections and consider the impact of the colour and texture of the cloth used as well as the impact of target mobility. A number of detection and localisation methods are developed iii for our LiDAL system including cross correlation, a background subtraction method and a background estimation method. These methods are considered to distinguish a mobile target from the ambient reflections due to background obstacles (furniture) in a realistic indoor environment

    A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications

    Get PDF
    The field of visible light communications (VLC) has gained significant interest over the last decade, in both fibre and free-space embodiments. In fibre systems, the availability of low cost plastic optical fibre (POF) that is compatible with visible data communications has been a key enabler. In free-space applications, the availability of hundreds of THz of the unregulated spectrum makes VLC attractive for wireless communications. This paper provides an overview of the recent developments in VLC systems based on gallium nitride (GaN) light-emitting diodes (LEDs), covering aspects from sources to systems. The state-of-the-art technology enabling bandwidth of GaN LEDs in the range of >400 MHz is explored. Furthermore, advances in key technologies, including advanced modulation, equalisation, and multiplexing that have enabled free-space VLC data rates beyond 10 Gb/s are also outlined

    Real-Time 262-Mb/s Visible Light Communication With Digital Predistortion Waveform Shaping

    Get PDF
    A digital predistortion waveform shaping scheme combined with a blue filter is proposed to optimize both the rise and fall times of a light-emitting diode (LED) and the optical receiver current of the signal of the real-time visible light communication (VLC) system. The proposed scheme is implemented on a field-programmable gate array (FPGA) and a digital-to-analog converter based test bed, which is flexible and reconfigurable by programming the FPGA to match different LED characteristics and varied data rates. A 262-Mb/s non-return-to-zero on-off keying modulation based real-time VLC link with a bit error rate of less than 1.0×10−6 is achieved over a transmission distance of 5.0 m, which uses a single white phosphorous LED with a limited power of 0.1 W

    Experimental Demonstration of High-Speed 4 × 4 Imaging Multi-CAP MIMO Visible Light Communications

    Get PDF
    In general, visible light communication (VLC) systems, which utilise white light-emitting diodes (LEDs), only offer a bandwidth limited to the lower MHz region. Therefore, providing VLC-based high data rate communications systems using VLC becomes a challenging task. To address this challenge, we propose a solution based on multiplexing in both the frequency and space domains. We experimentally demonstrate a 4 × 4 imaging multiple-input multiple-output (MIMO) VLC system (i.e., space multiplexing) utilising multiband carrierless amplitude and phase (m-CAP) modulation (i.e., frequency multiplexing). Independently, both MIMO and m-CAP have separately shown the remarkable ability to improve the transmission speeds in VLC systems, and hence, here we combine them to further improve the net data rate. We investigate the link performance by varying the number of subcarriers m, link distance L, and signal bandwidth Bsig. From all the values tested, we show that a data rate of ~249 Mb/s can be maximally achieved for m = 20, Bsig = 20 MHz, and L = 1 m, at a bit error rate of 3.2 × 10-3 using LEDs with ~4 MHz bandwidth

    Experimental Demonstration of High-Speed 4 × 4 Imaging Multi-CAP MIMO Visible Light Communications

    Get PDF
    In general, visible light communication (VLC) systems, which utilise white light-emitting diodes (LEDs), only offer a bandwidth limited to the lower MHz region. Therefore, providing VLC-based high data rate communications systems using VLC becomes a challenging task. To address this challenge, we propose a solution based on multiplexing in both the frequency and space domains. We experimentally demonstrate a 4 × 4 imaging multiple-input multiple-output (MIMO) VLC system (i.e., space multiplexing) utilising multiband carrierless amplitude and phase (m-CAP) modulation (i.e., frequency multiplexing). Independently, both MIMO and m-CAP have separately shown the remarkable ability to improve the transmission speeds in VLC systems, and hence, here we combine them to further improve the net data rate. We investigate the link performance by varying the number of subcarriers m, link distance L, and signal bandwidth Bsig. From all the values tested, we show that a data rate of ~249 Mb/s can be maximally achieved for m = 20, Bsig = 20 MHz, and L = 1 m, at a bit error rate of 3.2 × 10-3 using LEDs with ~4 MHz bandwidth
    • …
    corecore