582 research outputs found

    Airflow Characteristics Investigation of a Diesel Engine for Different Helical Port Openings and Engine Speeds

    Get PDF
    Intake airflow characteristics are essential for the performance of diesel engines. However, previous investigations of these airflow characteristics were mostly performed on two-valve engines despite the difference between the airflow of two-valve and four-valve engines. Therefore, in this study, particle image velocimetry (PIV) investigations were performed on a four-valve diesel engine. The investigations were conducted under different engine speeds and helical port openings using a swirl control valve (SCV). The results suggest that the position of the swirl center does not significantly shift with different engine speeds and helical port openings, as the dynamics of the flow remained closely similar. The trends of the airflow characteristics can be best observed during the compression stroke. A higher engine speed increases the angular velocity of the engine more compared to the increase of the airflow velocity and results in a lower swirl ratio of the flow. On the other hand, a higher engine speed leads to a higher mean velocity and the variation of velocity results in a larger turbulence intensity of the flow. Increasing the helical port opening brings a reduction in the swirl ratio and turbulence intensity as more airflow from the helical port disturbs the airflow from the tangential port

    A Preliminary Study on Intake Flow to Improve In-Cylinder Air Motion

    Get PDF
    The intake flow of a diesel engine significantly affects the combustion characteristics, thus influencing the power output, fuel efficiency and the emissions. In this thesis work, simulations using computational fluid dynamics (CFD) along with steady flow experiments were conducted to study the intake flow of a Yanmar NFD-170 diesel engine. The in-cylinder air motion generated by the intake flow through the helical intake port was studied. In order to model the shape of the engine accurately, a three dimensional model of the engine intake port, cylinder head and cylinder was produced using AutoDesk Inventor. The air motion was simulated under steady flow conditions using Converge CFD software, and the simulation results were compared with the experimental results to validate the model. The results indicated that major features of the steady flow were well modeled at particular flow conditions

    Computational fluid dynamics simulation of a single cylinder research engine working with biodiesel

    Get PDF
    The main objective of the paper is to present the results of the CFD simulation of a DI single cylinder engine using diesel, biodiesel, or different mixture proportions of diesel and biodiesel and compare the results to a test bed measurement in the same functioning point. The engine used for verifying the results of the simulation is a single cylinder research engine from AVL with an open ECU, so that the injection timings and quantities can be controlled and analyzed. In Romania, until the year 2020 all the fuel stations are obliged to have mixtures of at least 10% biodiesel in diesel [14]. The main advantages using mixtures of biofuels in diesel are: the fact that biodiesel is not harmful to the environment; in order to use biodiesel in your engine no modifications are required; the price of biodiesel is smaller than diesel and also if we compare biodiesel production to the classic petroleum based diesel production, it is more energy efficient; biodiesel assures more lubrication to the engine so the life of the engine is increased; biodiesel is a sustainable fuel; using biodiesel helps maintain the environment and it keeps the people more healthy [1-3]

    Characterization of flow structures during continuous valve opening testing for Swirl Number evaluation in Diesel engine cylinder

    Get PDF
    As world trucks (busses and industrial diesel engines) producer, Scania AB needs to respect international regulation about pollution and to develop competitive products. To accomplish these goals the engines production needs to respect the design and the tolerances given by the development department. One of the main parameter to be controlled is the Swirl Number, the ratio between the angular momentum and the axial momentum of the flow inside the cylinder. Nowadays the Swirl evaluation test is performed on few sample cylinder heads with stationary test at the central laboratory at the Scania Technical Center in Sweden. Considering both the test mean time (25 min- utes) and the time required to bring the cylinder heads from the production sites to the laboratory, in case of error Scania will suffer large economic losses. The aim of this work was to reduce the test time needed to perform experimental test to evaluate the Swirl Number and the Flow Coefficient. The time reduction was obtained investigating a continuous way to perform the evaluation test. Experimental tests show that continuous tests to evaluate the Swirl Number are possible. With the set up used in this work the test time was 10 minutes, saving the 65% of the original time

    Stratified charge rotary aircraft engine technology enablement program

    Get PDF
    The multifuel stratified charge rotary engine is discussed. A single rotor, 0.7L/40 cu in displacement, research rig engine was tested. The research rig engine was designed for operation at high speeds and pressures, combustion chamber peak pressure providing margin for speed and load excursions above the design requirement for a high is advanced aircraft engine. It is indicated that the single rotor research rig engine is capable of meeting the established design requirements of 120 kW, 8,000 RPM, 1,379 KPA BMEP. The research rig engine, when fully developed, will be a valuable tool for investigating, advanced and highly advanced technology components, and provide an understanding of the stratified charge rotary engine combustion process

    Effects of Intake Components and Stratification on the Particle and Gaseous Emissions of a Diesel Engine

    Get PDF
    It is of great significance to improve the performance of diesel engines by adjusting the intake components and their distribution. In this work, various proportions of exhaust gas recirculation (EGR) gas and oxygen (O2) have been introduced to the intake charge of a diesel engine and the effects of different intake components and stratification conditions on pollutant emissions, especially for particles, have been explored. The results show that the introduction of O2 into the intake charge is beneficial to alleviate the deterioration of particles and hydrocarbon (HC) emissions caused by high EGR rates. Compared with the pure air intake condition, the introduction of moderate O2 at high EGR rate conditions can simultaneously reduce nitrogen oxides (NOx) and particles, when the intake oxygen content (IOC) is 0.2 and the EGR rate is 20%, the NOx and particles are reduced by 45.66% and 66.49%, respectively. It is worth noting that different intake components have a significant impact on the particle size distribution (PSD) of diesel engines. In addition, the in-cylinder O2 concentration distribution formed by the stratified intake is advantageous for further improving the combined effect of NOx, particles and HC emissions relative to the homogeneous intake. At a condition of 0.2 IOC and 20% EGR rate, the NOx, particles, and HC emissions are about 8.8%, 14.3%, and 26% lower than that of intake components nonstratification, respectively

    Characterisation of flow structures inside an engine cylinder under steady state condition

    Get PDF
    The in-cylinder flow of internal combustion (IC) engines, formed during the intake stroke, is one of the most important factors that affect the quality of air-fuel mixture and combustion. The inducted airflow through the inlet valve is primarily influenced by the intake port design, intake valve design, valve lift and valve timing. Such parameters have a significant influence on the generation and development of in-cylinder flow motion. In most combustion systems the swirl and tumble motions are used to aid the air-fuel mixing with the subsequent decay of these bulk flow motions generating increased turbulence levels which then enhance the combustion processes in terms of rate of chemical reactions and combustion stability. Air motion formed inside the engine cylinder is three-dimensional, transient, highly turbulent and includes a wide spectrum of length and time scales. The significance of in-cylinder flow structures is mainly reflected in large eddy formation and its subsequent break down into turbulence kinetic energy. Analysis of the large scale and flow motions within an internal combustion engine are of significance for the improvement of engine performance. A first approximation of these flow structures can be obtained by steady state analysis of the in-cylinder flow with fixed valve lifts and pressure drops. Substantial advances in both experimental methods and numerical simulations provide useful research tools for better understanding of the effects of rotational air motion on engine performance. This study presents results from experimental and numerical simulations of in-cylinder flow structures under steady state conditions. Although steady state flow problem still includes complex three-dimensional geometries with high turbulence intensities and rotation separation, it is significantly less complex than the transient problem. Therefore, preliminary verifications are usually performed on steady state flow rig. For example, numerical investigation under steady state condition can be considered as a precondition for the feasibility of calculations of real engine cylinder flow. Particle Image Velocimetry (PIV) technique is used in the experimental investigations of the in-cylinder flow structures. The experiments have been conducted on an engine head of a pent-roof type (Lotus) for a number of fixed valve lifts and different inlet valve configurations at two pressure drops, 250mm and 635mm of H2O that correlate with engine speeds of 2500 and 4000 RPM respectively. From the 2-D in-cylinder flow measurements, a tumbling vortex analysis is carried out for six planes parallel to the cylinder axis. In addition, a swirl flow analysis is carried out for one horizontal plane perpendicular to the cylinder axis at half bore downstream from the cylinder head (44mm). Numerically, modelling of the in-cylinder flow is proving to be a key part of successful combustion simulation. The numerical simulations require an accurate representation of turbulence and initial conditions. This Thesis deals with numerical investigation of the in-cylinder flow structures under steady state conditions utilizing the finite-volume CFD package, STAR CCM+. Two turbulence models were examined to simulate the turbulent flow structure namely, Realizable k-ε and Reynolds Stress Turbulence Model, RSM. Three densities of generated mesh, which is polyhedral type, are examined. The three-dimensional numerical investigation has been conducted on the same engine head of a pent-roof type (Lotus) for a number of fixed valve lifts and both valves are opened configuration at two pressure drops 250mm and 635mm of H2O that is equivalent to engine speeds of 2500 and 4000 RPM respectively. The nature and modelling of the flow structure together with discussions on the influence of the pressure drop and valve lift parameters on the flow structures are presented and discussed. The experimental results show the advantage of using the planar technique (PIV) for investigating the complete flow structures developed inside the cylinder. It also highlighted areas where improvements need to be made to enhance the quality of the collected data in the vertical plane measurements. Based on the comparison between the two turbulence models, the RSM model results show larger velocity values of about 15% to 47% than those of the Realizable k-ε model for the whole regions. The computational results were validated through qualitative and quantitative comparisons with the PIV data obtained from the current investigation and published LDA data on both horizontal and vertical cross sections. The calculated correlation coefficient, which is above 0.6, indicated that a reasonable prediction accuracy for the RSM model. This verifies that the numerical simulation with the RSM model is a useful tool to analyse turbulent flows in complex engine geometries where anisotropic turbulence is created
    • …
    corecore